Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Room temperature ionic liquids RTIL

Theoretical and applied aspects of microwave heating, as well as the advantages of its application are discussed for the individual analytical processes and also for the sample preparation procedures. Special attention is paid to the various preconcentration techniques, in part, sorption and extraction. Improvement of microwave-assisted solution preconcentration is shown on the example of separation of noble metals from matrix components by complexing sorbents. Advantages of microwave-assisted extraction and principles of choice of appropriate solvent are considered for the extraction of organic contaminants from solutions and solid samples by alcohols and room-temperature ionic liquids (RTILs). [Pg.245]

Recently, a eutectic mixture of choline chloride and urea (commercially known as Reline) was used as a medium from which CdS, as well as CdSe and ZnS, thin films were electrodeposited for the first time [53]. Reline is a conductive room-temperature ionic liquid (RTIL) with a wide electrochemical window. The voltammetric behavior of the Reline-Cd(II)-sulfur system was investigated, while CdS thin films were deposited at constant potential and characterized by photocurrent and electrolyte electroabsorbance spectroscopies. [Pg.93]

Room temperature ionic liquids (RTILs), such as those based on A,A-dialkylimidazolium ions, are gaining importance (Bradley, 1999). The ionic liquids do not evaporate easily and thus there are no noxious fumes. They are also non-inflammable. Ionic liquids dissolve catalysts that are insoluble in conventional organic chemicals. IFP France has developed these solvents for dimerization, hydrogenation, isomerization, and hydroformylation reactions without conventional solvents. For butene dimerization a commercial process exists. RTILs form biphasic systems with the catalyst in the RTIL phase, which is immiscible with the reactants and products. This system is capable of being extended to a list of organometallic catalysts. Industrial Friedel-Crafts reactions, such as acylations, have been conducted and a fragrance molecule tra.seolide has been produced in 99% yield (Bradley, 1999). [Pg.148]

The concept of performing microwave synthesis in room temperature ionic liquids (RTIL) as reaction media has been applied to several different organic transformations (Scheme 4.18), such as 1,3-dipolar cycloaddition reactions [54], catalytic transfer hydrogenations [55], ring-closing metathesis [56], the conversion of alcohols to alkyl halides [57, 58], and several others [59-61],... [Pg.71]

Room-temperature Ionic Liquids (RTIL) - Synthesis and Applications in Organic Synthesis under the Action of Microwaves... [Pg.287]

Ionic liquids, having per definition a melting point below 100 °C, and especially room temperature ionic liquids (RTIL) have attracted much interest in recent years as novel solvents for reactions and electrochemical processes [164], Some of these liquids are considered to be green solvents [165]. The scope of ionic liquids based on various combinations of cations and anions has dramatically increased, and continuously new salts [166-168] and solvent mixtures [169] are discovered. The most commonly used liquids are based on imidazolium cations like l-butyl-3-methylimidazolium [bmim] with an appropriate counter anion like hexafluorophos-phate [PFg]. Salts with the latter anion are moisture stable and are sometimes called third generation ionic liquids. [Pg.379]

The literature of room temperature ionic liquids (RTILs) was reviewed to select and report on those RTILs involved directly in chemical reactions either as a solvent for a catalyst, a conversion agent, or a task specific ionic liquid. Special emphasis was placed on manuscripts appearing in the literature in the last ten years. [Pg.153]

Introduction of room-temperature ionic liquids (RTIL) as electrochemical media promises to enhance the utility of fuel-cell-type sensors (Buzzeo et al., 2004). These highly versatile solvents have nearly ideal properties for the realization of fuelcell-type amperometric sensors. Their electrochemical window extends up to 5 V and they have near-zero vapor pressure. There are typically two cations used in RTIL V-dialkyl immidazolium and A-alkyl pyridinium cations. Their properties are controlled mostly by the anion (Table 7.4). The lower diffusion coefficient and lower solubility for some species is offset by the possibility of operation at higher temperatures. [Pg.232]

Ionic liquids (ILs) are basically salts with poorly coordinated ions, resulting in low melting points. Since low is a relative term (NaCl, for example, is an IL between 801 °C and 1465 °C), chemists use it to refer either to salts which melt below 100 °C, or to salts that are liquid at 25 °C. The latter group is known as room-temperature ionic liquids (RTILs). In most RTILs, one of the ions is organic, with a delocalized charge. Note that ILs are not concentrated salt solutions. They are nonmolecular liquids which contain, in theory, no water (in practice, many ILs contain at least traces of water). [Pg.163]

Separation of C02 from N2 or CH4 comprises an area of critical industrial, social, and environmental importance where room-temperature ionic liquids (RTILs) are showing great potential [3, 63, 64], The commonly used ILs for this purpose are l-alkyl-3-methylimidazolium salts, represented by the formula [C MIm][X, where C is an n-alkyl chain of varying length and X is typically a molecular anion with a delocalized negative charge, such as bis(trifluorome-thane)sulfonimide, [Tf2N ] (Scheme 4.4) [65-71]. [Pg.47]

Voltammetric, electrodeposition, electrosynthetic and electroanalytical studies are carried out in room-temperature ionic liquids (RTILs) by a significant and increasing number of both industrial and academic laboratories [23-25], Such studies, when carried out at anything other than a very empirical level, require the use of a reference electrode . The purpose of this chapter is to address the special problems this poses and their solutions. First, however, we start by considering the essential features of a reference electrode in general. [Pg.296]

Solvent free methods have also impacted on the preparation of other alternative reaction media. Namely, a range of ionic liquids (ILs) was prepared (including imidazolium, pyridinium and phosphonium salts) through halidetrapping anion metathesis reactions (Figure 2.17). The alkyl halide by-product was easily removed by vacuum or distillation and the products were obtained quantitatively in high purity. In addition to being solvent free, this route is more atom economic than the usual route to room temperature ionic liquids (RTILs) as it does not use silver(i), alkali metal or ammonium salts which are normally used in an anion metathesis reaction. [Pg.35]

Figure 5.13 Some room temperature ionic liquids (RTILs) with naturally sourced anions or cations. Figure 5.13 Some room temperature ionic liquids (RTILs) with naturally sourced anions or cations.
The first MW-assisted intramolecular Stetter reaction was reported for the synthesis of chromanone derivatives using the imidazolium type of room temperature ionic liquids (RTILs) with thiazolium salts and Et3N as catalysts <2006ASC1826>. [Pg.738]


See other pages where Room temperature ionic liquids RTIL is mentioned: [Pg.84]    [Pg.99]    [Pg.69]    [Pg.212]    [Pg.287]    [Pg.810]    [Pg.290]    [Pg.181]    [Pg.156]    [Pg.387]    [Pg.102]    [Pg.336]    [Pg.12]    [Pg.366]    [Pg.213]    [Pg.24]    [Pg.78]    [Pg.285]    [Pg.227]    [Pg.4]    [Pg.232]    [Pg.185]    [Pg.78]   
See also in sourсe #XX -- [ Pg.193 ]




SEARCH



Ionic RTILs

Ionic room temperature

Liquid temperature

Room ionic liquid

Room temperature

Room temperature ionic liquid

Room-temperature ionic liquids (RTILs

Room-temperature ionic liquids (RTILs

Temperature ionic

© 2024 chempedia.info