Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Robinson-Mannich annulation reaction

As already discussed for aldol and Robinson annulation reactions, proline is also a catalyst for enantioselective Mannich reactions. Proline effectively catalyzes the reactions of aldehydes such as 3-methylbutanal and hexanal with /V-arylimines of ethyl glyoxalate.196 These reactions show 2,3-syn selectivity, although the products with small alkyl groups tend to isomerize to the anti isomer. [Pg.143]

Strategies based on two consecutive specific reactions or the so-called "tandem methodologies" very useful for the synthesis of polycyclic compounds. Classical examples of such a strategy are the "Robinson annulation" which involves the "tandem Michael/aldol condensation" [32] and the "tandem cyclobutene electrocyclic opening/Diels-Alder addition" [33] so useful in the synthesis of steroids. To cite a few new methodologies developed more recently we may refer to the stereoselective "tandem Mannich/Michael reaction" for the synthesis of piperidine alkaloids [34], the "tandem cycloaddition/radical cyclisation" [35] which allows a quick assembly of a variety of ring systems in a completely intramolecular manner or the "tandem anionic cyclisation approach" of polycarbocyclic compounds [36]. [Pg.333]

The Robinson annulation is the reaction of alkali metal derivatives of cyclohexanones with a-,p>unsaturated methyl ketones to produce cycloketones and polycycloketones. The standard method for Robinson annulation is exemplified in the mechanism shown above. For the synthesis of the 1,5-diketone side chain, the enolate nucleophile reacts with a Michael acceptor this Michael acceptor is usually a substituted vinyl ketone or the parent methyl vinyl ketone (MVK), although the latter gives low yield due to its propensity to polymerize under the standard reaction conditions. To overcome the drawbacks for using MVK, Robinson, McQuillin and Du Feu introduced the Robinson-Mannich variation of the annulation reaction. This modification uses a quatemized Mannich base formed from the vinyl entity the Maimich base is made in situ and acts as a methyl vinyl ketone precursor after it is converted to its methiodides. The formed methiodides of the Mannich adduct 4-(trimethylamino-2-butanone) is condensed with sodioderivatives of ketones or with the parent ketone in the presence of sodium ethoxide. [Pg.388]

Aldol addition and related reactions of enolates and enolate equivalents are the subject of the first part of Chapter 2. These reactions provide powerful methods for controlling the stereochemistry in reactions that form hydroxyl- and methyl-substituted structures, such as those found in many antibiotics. We will see how the choice of the nucleophile, the other reagents (such as Lewis acids), and adjustment of reaction conditions can be used to control stereochemistry. We discuss the role of open, cyclic, and chelated transition structures in determining stereochemistry, and will also see how chiral auxiliaries and chiral catalysts can control the enantiose-lectivity of these reactions. Intramolecular aldol reactions, including the Robinson annulation are discussed. Other reactions included in Chapter 2 include Mannich, carbon acylation, and olefination reactions. The reactivity of other carbon nucleophiles including phosphonium ylides, phosphonate carbanions, sulfone anions, sulfonium ylides, and sulfoxonium ylides are also considered. [Pg.1334]

These a,/l-unsaturated ketones and aldehydes are used as reactants in Michael additions (Section 1.10) and Robinson annulations (Section 2.1.4), as well as in a number of other reactions that we will encounter later. Entries 8 and 9 in Scheme 2.11 illustrate Michael reactions carried out by in situ generation of a,/ -unsaturated carbonyl compounds from Mannich bases. [Pg.98]


See other pages where Robinson-Mannich annulation reaction is mentioned: [Pg.797]    [Pg.131]    [Pg.61]    [Pg.2]    [Pg.271]    [Pg.796]    [Pg.1305]    [Pg.554]    [Pg.366]   
See also in sourсe #XX -- [ Pg.388 ]




SEARCH



Annulation reactions

Mannich annulation

Robinson

Robinson annulation

Robinson annulation reaction

Robinson reaction

© 2024 chempedia.info