Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Robinson annulation Compounds

Tran orm-based or long-range strategies The retrosynthetic analysis is directed toward the application of powerful synthesis transforms. Functional groups are introduced into the target compound in order to establish the retion of a certain goal transform (e.g., the transform for the Diels-Alder reaction, Robinson annulation, Birch reduction, halolactonization, etc.). [Pg.575]

Problem 23.22 How would you prepare the following compound using a Robinson annulation reaction between a jS-diketone and an, /3-unsaturated ketone Draw the structures of both reactants and the intermediate Michael addition product. [Pg.900]

Scheme 2.11 shows some examples of Robinson annulation reactions. Entries 1 and 2 show annulation reactions of relatively acidic dicarbonyl compounds. Entry 3 is an example of use of 4-(trimethylammonio)-2-butanone as a precursor of methyl vinyl ketone. This compound generates methyl vinyl ketone in situ by (3-eliminalion. The original conditions developed for the Robinson annulation reaction are such that the ketone enolate composition is under thermodynamic control. This usually results in the formation of product from the more stable enolate, as in Entry 3. The C(l) enolate is preferred because of the conjugation with the aromatic ring. For monosubstituted cyclohexanones, the cyclization usually occurs at the more-substituted position in hydroxylic solvents. The alternative regiochemistry can be achieved by using an enamine. Entry 4 is an example. As discussed in Section 1.9, the less-substituted enamine is favored, so addition occurs at the less-substituted position. [Pg.136]

The Robinson annulation is a valuable method for preparing bicyclic and tricyclic structures that can serve as starting materials for the preparation of steroids and terpenes.175 Reaction with 2-methylcyclohexan-l,3-dione gives a compound called the Wieland-Miescher ketone. [Pg.138]

Compound 23-V is known as the Wieland-Miescher ketone and can be obtained by Robinson annulation of 2-methylcyclohexane-l,3-dione. [Pg.1188]

The Robinson annulation reaction of 7-methoxy-l-methyl-2-tetralone with methyl vinyl ketone in the presence of A,-(4-trifluoromethylbenzyl)cinchonidinium bromide produces the S-isomer of the tricyclic compound (Scheme 12.10) with an 81% conversion (81% ee) [8]. [Pg.530]

Strategies based on two consecutive specific reactions or the so-called "tandem methodologies" very useful for the synthesis of polycyclic compounds. Classical examples of such a strategy are the "Robinson annulation" which involves the "tandem Michael/aldol condensation" [32] and the "tandem cyclobutene electrocyclic opening/Diels-Alder addition" [33] so useful in the synthesis of steroids. To cite a few new methodologies developed more recently we may refer to the stereoselective "tandem Mannich/Michael reaction" for the synthesis of piperidine alkaloids [34], the "tandem cycloaddition/radical cyclisation" [35] which allows a quick assembly of a variety of ring systems in a completely intramolecular manner or the "tandem anionic cyclisation approach" of polycarbocyclic compounds [36]. [Pg.333]

The product in entry 1 of Scheme 2.10 is commonly known as the Wieland-Miescher ketone and is a useful starting material for the preparation of steroids and terpenes. The Robinson annulation to prepare this ketone can be carried out enantioselectively by using the amino acid L-proline to form an enamine intermediate. The 5-enantiomer of the product is obtained in high enantiomeric excess.89 This compound and the corresponding product obtained from cyclopentane-1,3-dione90 are key intermediates in the enantiose-lective synthesis of steroids.91... [Pg.95]

These a,/l-unsaturated ketones and aldehydes are used as reactants in Michael additions (Section 1.10) and Robinson annulations (Section 2.1.4), as well as in a number of other reactions that we will encounter later. Entries 8 and 9 in Scheme 2.11 illustrate Michael reactions carried out by in situ generation of a,/ -unsaturated carbonyl compounds from Mannich bases. [Pg.98]

The sequence that follows illustrates how a conjugate aldol addition (Michael addition) followed by a simple aldol condensation may be used to build one ring onto another. This procedure is known as the Robinson annulation (ring forming) reaction (after the English chemist Sir Robert Robinson, who won the Nobel Prize in Chemistry in 1947 for his research on naturally occurring compounds). [Pg.225]

The copper-catalyzed conjugate addition of methyl magnesium iodide to cyclohexenone and trapping the enolate as its trimethylsilyl enol ether, followed by a trityl hexachloro-antinomate-catalyzed Mukaiyama reaction, is apphed to / -(—jcarvone. C-2, C-3 functionalized chiral cyclohexanones are converted into their a-cyano ketones, which are submitted to Robinson annulation with methyl vinyl ketone. Highly functionalized chiral decalones are obtained that can be used as starting compounds in the total synthesis of enantiomerically pure clerodanes (equation 70). [Pg.474]

The Robinson Annulation is a useful reaction for the formation of six-membered rings in polycyclic compounds, such as steroids. It combines two reactions the Michael Addition and the Aldol Condensation... [Pg.199]

Enolate D of Figure 13.71 can undergo an aldol reaction with the C=0 double bond of the ketone. The bicyclic compound A is formed as the condensation product. It is often possible to combine the formation and the consecutive reaction of a Michael adduct in a one-pot reaction. The overall reaction then is an annulation of a cyclohexenone to an enolizable ketone. The reaction sequence of Figure 13.71 is the Robinson annulation, an extraordinarily important synthesis of six-membered rings. [Pg.586]

Show syntheses of these compounds using the Robinson annulation reaction ... [Pg.913]

Show how you would use Robinson annulations to synthesize the following compounds. Work backward, remembering that the cyclohexenone is the new ring and that the double bond of the cyclohexenone is formed by the aldol with dehydration. Take apart the double bond, then see what structures the Michael donor and acceptor must have. [Pg.1091]

Show how you would use the Robinson annulation to synthesize the following compounds. [Pg.1097]

The Robinson annulation is a combination of two reactions covered in this chapter. First, a Michael reaction takes place between a nucleophilic donor (the diketone in this problem) and an a,(3-unsaturated carbonyl compound (the enone shown). The resulting product can cyclize in an aldol reaction. The base catalyzes both reactions. [Pg.619]

When you need to synthesize a p-hydroxy ketone or aldehyde or an a,p-unsaturated ketone or aldehyde, use an aldol reaction. When you need to synthesize a p-diketone or p-keto ester, use a Claisen reaction. When you need to synthesize a 1,5-dicarbonyl compound, use a Michael reaction. The Robinson annulation is used to synthesize polycyclic molecules by a combination of a Michael reaction with an aldol condensation. [Pg.685]

Nucleophilic attack on ( -alkene)Fp+ cations may be effected by heteroatom nucleophiles including amines, azide ion, cyanate ion (through N), alcohols, and thiols (Scheme 39). Carbon-based nucleophiles, such as the anions of active methylene compounds (malonic esters, /3-keto esters, cyanoac-etate), enamines, cyanide, cuprates, Grignard reagents, and ( l -allyl)Fe(Cp)(CO)2 complexes react similarly. In addition, several hydride sources, most notably NaBHsCN, deliver hydride ion to Fp(jj -alkene)+ complexes. Subjecting complexes of type (79) to Nal or NaBr in acetone, however, does not give nncleophilic attack, but instead results rehably in the displacement of the alkene from the iron residue. Cyclohexanone enolates or silyl enol ethers also may be added, and the iron alkyl complexes thus produced can give Robinson annulation-type products (Scheme 40). Vinyl ether-cationic Fp complexes as the electrophiles are nseful as vinyl cation equivalents. ... [Pg.2034]

Conjugate Addition to a,j3-Unsaturated Carbonyl Compounds. The Robinson Annulation and the Michael Addition with the Independent Variation of Addends... [Pg.84]

Owing to numerous studies, a fairly diversified set of compounds have been recognized as potential components of the Robinson annulation and this protocol has been adjusted and utilized to assemble complex frameworks of terpenes, steroids, and alkaloids. [Pg.87]

It seems appropriate to inquire whether or not it is possible to carry out other Michael reactions and, generally, other nucleophilic additions to unsaturated compounds as a sequence of kinetically independent steps using one s choice of nucleophiles and electrophiles The answer is definitely yes . A rationale similar to that used to describe the Robinson annulation provides us with the key to how this goal may be attained. First of all, the initial step of the reaction, addition of the nucleophilic component across a double (or triple) bond, needs to be carried out in the absence of the external electrophiles (preferably in aprotic solvents). Secondly, a carbanionic intermediate, incipiently formed at this step, requires sufficient stabilization to survive as a chemical entity under... [Pg.87]

The intramolecular interaction between an enolate and a carbonyl electrophile to form a six-membered ring is a well-known and general method (e.g. the Robinson annulation, see Section 2.3.3). This and related cyclization reactions involving interactions between 1,5-dicarbonyl moieties proceeds with high selectivity (A), and the alternative option, the formation of a four-membered ring (B), is much less favorable and rarely observed (Scheme 2.108). The usefulness of this method for the preparation of compounds containing the cyclohexenone moiety is abundantly documented in the literature. [Pg.168]

The Robinson annulation is a ring-forming reaction that combines a Michael reaction with an intramolecular aldol reaction. Like the other reactions in Chapter 24, it involves enolates and it forms carbon-carbon bonds. The two starting materials for a Robinson annulation are an a,P-unsaturated carbonyl compound and an enolate. [Pg.936]

The mechanism of the Robinson annulation consists of two parts a Michael addition to the a,p-unsaturated carbonyl compound to form a 1,5-dicarbonyl compound, followed by an intramolecular aldol reaction to form the six-membered ring. The mechanism is written out in two parts (Mechanisms 24.7 and 24.8) for Reaction [2] between methyl vinyl ketone and 2-methyl-1,3-cyclohexanedione. [Pg.936]

The Robinson Annulation—Part [1] Michael Addition to Form a 1,5-Dicarbonyl Compound... [Pg.936]

To draw the product of Robinson annulation without writing out the mechanism each time, place the a carbon of the compound that becomes the enolate next to the p carbon of the oc,P-unsaturated carbonyl compound. Then, join the appropriate carbons together as shown. If you follow this method of drawing the starting materials, the double bond in the product always ends up in the same position in the six-membered ring. [Pg.937]

Problem 24.24 Draw the products when each pair of compounds is treated with OH, H2O in a Robinson annulation reaction. [Pg.938]

To use the Robinson annulation in synthesis, you must be able to determine what starting materials are needed to prepare a given compound, by working in the retrosynthetic direction. [Pg.938]

Example What starting materials are needed to synthesize the following compound using a Robinson annulation ... [Pg.939]

Dibutyltin bis(triflate), Bu2Sn(OTf)2, is a mild Lewis acid which catalyzes clean Michael addition of enol silyl ethers [148]. The new catalyst enables use of various labile acceptors such as methyl vinyl ketone and 2-cyclopentenone which do not undergo smooth reaction with conventional Lewis acids. A variety of enol silyl ethers are also employable and thus 2-(trimethylsiloxy)propene, the simplest of this class of compounds, can be used. The adducts of enol silyl ethers of cycloalkanones with vinyl ketones are readily cyclized to give the desired annulated enones free of isomers. Consequently, a practical version of the Robinson annulation has been realized. [Pg.445]

This very useful reaction resulted from a failed attempt to introduce a new protected methyl vinyl ketone equivalent for the all important Robinson annul-lation reaction. This failure turned out to be quite rewarding, for it allowed for a fast, simple, mild, and high yielding construction of a-alkylidene ketones, esters, and nitriles, as well as /3-methylenebutyrolactones, a family of compounds with several representatives among the tumor growth inhibitors. The method, unfortunately, has its own limitations, which will be discussed after exposing probable mechanisms. [Pg.25]


See other pages where Robinson annulation Compounds is mentioned: [Pg.474]    [Pg.478]    [Pg.79]    [Pg.184]    [Pg.543]    [Pg.31]    [Pg.156]    [Pg.939]    [Pg.1275]   
See also in sourсe #XX -- [ Pg.1255 ]




SEARCH



Robinson

Robinson annulation

Robinson annulation synthesizing compound using

© 2024 chempedia.info