Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rhodium complex catalysts asymmetric

The present interest in asymmetric catalysis was demonstrated by awarding Nobel prizes to three winners W. S. Knowles (USA) for elaboration of rhodium complex catalysts effective in asymmetric synthesis of anti-Parkinson medicine, R. Noyori (Japan) for elaboration of a new catalytic system based on chiral ruthenium-phosphine complex catalysts that are very effective in hydrogenation reactions, and B. Sharpless (USA) for elaboration of epoxidation and other reactions under the action of chiral titanium complexes. [Pg.312]

In 1978, J. K. Stille and his group proposed an interesting extension of the concept of asymmetric synthesis via rhodium complexation by attaching the metallic site to an insoluble polymer (15). The main advantage of this modification is the possibility of recovering the optically active phosphine-rhodium complex catalyst. [Pg.91]

Styrene, a-ethyl-asymmetric hydroformylation catalysts, platinum complexes, 6, 266 asymmetric hydrogenation catalysts, rhodium complexes, 6, 250 Styrene, a-methyl-asymmetric carbonylation catalysis by palladium complexes, 6, 293 carbonylation... [Pg.226]

Chelucci et al. [41] synthesized further chiral terpyridines derived from (-)-yd-pinene, (-i-)-camphor, and (-l-)-2-carene and tested their ability to chelate copper or rhodium for the asymmetric cyclopropanation of styrene. The copper catalysts were poorly efficient and selective in this reaction. The corresponding rhodium complexes led to the best result (64% ee) with the ligand derived from (-l-)-2-carene (ligand 33 in Scheme 17). [Pg.107]

Herrmann et al. reported for the first time in 1996 the use of chiral NHC complexes in asymmetric hydrosilylation [12]. An achiral version of this reaction with diaminocarbene rhodium complexes was previously reported by Lappert et al. in 1984 [40]. The Rh(I) complexes 53a-b were obtained in 71-79% yield by reaction of the free chiral carbene with 0.5 equiv of [Rh(cod)Cl]2 in THF (Scheme 30). The carbene was not isolated but generated in solution by deprotonation of the corresponding imidazolium salt by sodium hydride in liquid ammonia and THF at - 33 °C. The rhodium complexes 53 are stable in air both as a solid and in solution, and their thermal stability is also remarkable. The hydrosilylation of acetophenone in the presence of 1% mol of catalyst 53b gave almost quantitative conversions and optical inductions up to 32%. These complexes are active in hydrosilylation without an induction period even at low temperatures (- 34 °C). The optical induction is clearly temperature-dependent it decreases at higher temperatures. No significant solvent dependence could be observed. In spite of moderate ee values, this first report on asymmetric hydrosilylation demonstrated the advantage of such rhodium carbene complexes in terms of stability. No dissociation of the ligand was observed in the course of the reaction. [Pg.210]

Asymmetric hydrosilylation can be extended to 1,3-diynes for the synthesis of optically active allenes, which are of great importance in organic synthesis, and few synthetic methods are known for their asymmetric synthesis with chiral catalysts. Catalytic asymmetric hydrosilylation of butadiynes provides a possible way to optically allenes, though the selectivity and scope of this reaction are relatively low. A chiral rhodium complex coordinated with (2S,4S)-PPM turned out to be the best catalyst for the asymmetric hydrosilylation of butadiyne to give an allene of 22% ee (Scheme 3-20) [59]. [Pg.86]

Rhodium complexes based on the chiral ligand (120) have been used in the asymmetric hydrogenation of functionalized chelating olefins in methanol and water. The results are compared to those obtained using the corresponding non-sulfonated catalysts in water all sulfonated... [Pg.113]

The monosulfonated PPh derivative, Ph2P(m-C6H4S03K) (DPM) and its rhodium complex, HRh(CO)(DPM)3 have been synthesized and characterized by IR and NMR spectroscopic techniques. The data showed that the structure was similar to [HRh(CO)(PPh3)3]. The catalytic activity and selectivity of [HRh(CO)(DPM)3] in styrene hydroformylation were studied in biphasic catalytic systems.420 421 Rh1 complexes [Rh(acac)(CO)(PR3)] with tpa (131), cyep (132), (126), ompp (133), pmpp (134), tmpp (135), PPh2(pyl), PPh(pyl)2, and P(pyl)3 were characterized with NMR and IR spectra. Complexes with (131), (132), and (126) were catalysts for hydrogenation of C—C and C—O bonds, isomerization of alkenes, and hydroformylation of alkenes.422 Asymmetric hydroformylation of styrene was performed using as catalyst precursor [Rh(//-0 Me)(COD)]2 associated with sodium salts of m-sulfonated diarylphosphines.423... [Pg.177]

Some general reviews on hydrogenation using transition metal complexes that have appeared within the last five years are listed (4-7), as well as general reviews on asymmetric hydrogenation (8-10) and some dealing specifically with chiral rhodium-phosphine catalysts (11-13). The topic of catalysis by supported transition metal complexes has also been well reviewed (6, 14-29), and reviews on molecular metal cluster systems, that include aspects of catalytic hydrogenations, have appeared (30-34). [Pg.321]


See other pages where Rhodium complex catalysts asymmetric is mentioned: [Pg.123]    [Pg.206]    [Pg.129]    [Pg.7190]    [Pg.7196]    [Pg.171]    [Pg.74]    [Pg.345]    [Pg.75]    [Pg.76]    [Pg.95]    [Pg.105]    [Pg.121]    [Pg.140]    [Pg.151]    [Pg.206]    [Pg.1037]    [Pg.33]    [Pg.35]    [Pg.9]    [Pg.22]    [Pg.75]    [Pg.243]    [Pg.256]    [Pg.40]    [Pg.77]    [Pg.347]    [Pg.172]    [Pg.174]    [Pg.174]    [Pg.245]    [Pg.246]    [Pg.106]    [Pg.61]    [Pg.93]   
See also in sourсe #XX -- [ Pg.338 , Pg.339 , Pg.340 , Pg.341 , Pg.342 , Pg.343 , Pg.344 , Pg.345 , Pg.346 , Pg.347 , Pg.348 , Pg.349 , Pg.350 , Pg.351 , Pg.352 , Pg.353 , Pg.354 , Pg.355 , Pg.366 ]




SEARCH



Asymmetric complexes

Asymmetric rhodium

Catalyst asymmetric

Rhodium catalysts asymmetric

Rhodium catalysts catalyst

Rhodium complex catalysts

Rhodium complexes, asymmetric

© 2024 chempedia.info