Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rhodium alkynes titanium with

Reactions similar to the PKR that provide cyclopentenones from the [2 + 2 + 1] cycloaddition of an alkyne, an alkene, and carbon monoxide can be achieved with metals other than cobalt. Chromium, iron, iridium, molybdenum, nickel, palladium, rhodium, ruthenium, titanium, tungsten and zirconium have all been reported to catalyze the cycloaddition. The mechanism, selectivity, and functional group compatibility varies with each metal, making their discussion beyond the scope of this chapter. [Pg.157]

C-M bond addition, for C-C bond formation, 10, 403-491 iridium additions, 10, 456 nickel additions, 10, 463 niobium additions, 10, 427 osmium additions, 10, 445 palladium additions, 10, 468 rhodium additions, 10, 455 ruthenium additions, 10, 444 Sc and Y additions, 10, 405 tantalum additions, 10, 429 titanium additions, 10, 421 vanadium additions, 10, 426 zirconium additions, 10, 424 Carbon-oxygen bond formation via alkyne hydration, 10, 678 for aryl and alkenyl ethers, 10, 650 via cobalt-mediated propargylic etherification, 10, 665 Cu-mediated, with borons, 9, 219 cycloetherification, 10, 673 etherification, 10, 669, 10, 685 via hydro- and alkylative alkoxylation, 10, 683 via inter- andd intramolecular hydroalkoxylation, 10, 672 via metal vinylidenes, 10, 676 via SnI and S Z processes, 10, 684 via transition metal rc-arene complexes, 10, 685 via transition metal-mediated etherification, overview,... [Pg.76]

The Pauson-Khand reaction is a well-known method for preparing cydopente-nones by the [2 + 2 + 1] cycloaddition reaction of alkyne, alkene and CO. While reactions using stoichiometric amounts of Co2(CO)g were initially examined, catalytic versions with cobalt, titanium, rhodium, iridium, and ruthenium complexes have recently been developed. Whilst the intramolecular version is rather easy, the inter-molecular version is a very difficult problem that has not yet been solved [76]. [Pg.287]

Lewis acid catalyzed versions of [4 4- 2] cycloadditions are restricted to functionalized dieno-philes. Nonfunetionalized alkenes and alkynes cannot be activated with Lewis acids and in thermal [4 + 2] cycloadditions these suhstrates usually show low reactivity. It has been reported that intcrmolecular cycloaddition of unactivated alkynes to dienes can be accelerated with low-va-lent titanium, iron or rhodium catalysts via metal-mediated - -complex formation and subsequent reductive elimination39 44. Usually, however, low product selectivities are observed due to side reactions, such as aromatization, isomerization or oligomerization. More effective are nickel-catalyzed intramolecular [4 4- 2]-dienyne cycloadditions which were developed for the synthesis of polycycles containing 1.4-cyclohexadienes45. Thus, treatment of dienyne 1, derived from sorbic acid, with 10mol% of Ni(cod)2 and 30 mol % of tris(o-biphenyl) phosphite in tetrahydrofuran at room temperature affords bicyclic 1,4-dienes 2, via intramolecular [4 + 2] cycloaddition, with excellent yield and moderate to complete diastereocontrol by substituents attached to the substrate. The reaction is sensitive towards variation in the catalyst and the ligand. [Pg.470]

A problem is that the Pauson-Khand reaction uses two equivalents of cobalt. More efficient versions, many of them catalytic, using other metals have been developed. These include carbonyl complexes of titanium, molybdenum, tungsten (Scheme 7.15), rhodium and ruthenium (Scheme 7.16). Rhodium, iridium and iron (Scheme 7.17) have also been used with two alkynes to give cyclopentadienones, often as complexes 7.59. A version of the Pauson-Khand reaction employing a nickel catalyst and an isonitrile in place of CO has been developed. The product is an imine, which can be hydrolysed to a cyclopentenone. [Pg.246]


See other pages where Rhodium alkynes titanium with is mentioned: [Pg.1244]    [Pg.1333]    [Pg.111]    [Pg.66]    [Pg.1089]    [Pg.1247]    [Pg.52]    [Pg.694]    [Pg.164]   
See also in sourсe #XX -- [ Pg.4 ]




SEARCH



Alkynes titanium

Rhodium alkynes

Rhodium titanium

With alkynes

© 2024 chempedia.info