Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rhenium-Based Initiators

Croup VIIIA Transition Metal-Based Initiators [Pg.170]


Counterion effects similar to those in ionic chain copolymerizations of alkenes (Secs. 6-4a-2, 6-4b-2) are present. Thus, copolymerizations of cyclopentene and norbomene with rhenium- and ruthenium-based initiators yield copolymers very rich in norbomene, while a more reactive (less discriminating) tungsten-based initiator yields a copolymer with comparable amounts of the two comonomers [Ivin, 1987]. Monomer reactivity ratios are also sensitive to solvent and temperature. Polymer conformational effects on reactivity have been observed in NCA copolymerizations where the particular polymer chain conformation, which is usually solvent-dependent, results in different interactions with each monomer [Imanishi, 1984]. [Pg.601]

Research Focus Preparation of rhenium-based nucleotides by ligand-initiated ring-opening polymerization. [Pg.451]

Kuroda and Tarui [498] developed a spectrophotometric method for molybdenum based on the fact that MoVI catalyses the reduction of ferric iron by divalent tin ions. The plot of initial reaction rate constant versus molybdenum concentration is rectilinear in the range 0.01-0.3 mg/1 molybdenum. Several elements interfere, namely, titanium, rhenium, palladium, platinum, gold, arsenic, selenium, and tellurium. [Pg.203]

A large number of styrenic monomers have been investigated in metal-catalyzed radical polymerizations. Polymerization of styrene (M-19) can be controlled with copper,28,84,85 152 176 ruthenium,57 60 62 66 86,205 iron,71 75 rhodium,86 140 rhenium,141 and molybdenum catalysts.144 The polymerizations have actively been studied with the copper-based systems, among which precisely controlled molecular weights and very narrow MWDs (MJMn =1.1) were obtained in a homogeneous system consisting of 1-13 (X = Br), CuBr, and L-3 in the bulk at 130 °C.85 Similar well-controlled polymerizations are feasible with several ruthenium (Ru-5)60 and iron (Fe-2,72 Fe-3,73 and Fe-471) complexes in conjunction with a bromide or iodide initiator. Even a chloride initiator (1-25, X = Cl) can afford narrow MWDs (MJMn =1.1) when coupled... [Pg.474]

Isolable transition metal complexes containing hydride and terminal oxo ligands are rare however, Tp Re( = 0)(H)X (X = Cl, H or OTf) and TpRe( = 0)(H)Cl have been synthesized, isolated and characterized. Reactions of Tp Re( = 0)(H) OTf (12) with unsaturated substrates (e.g., ethene, propene or acetaldehyde) result in insertion of C = C or C = 0 bonds into the Re-H bond to yield Tp Re( = 0)(R) (OTf) (R = ethyl or propyl) or Tp Re( = 0)(0Et)(0Tf) (Scheme 6). Oxidation of 12 with pyridine-iV-oxide or DMSO produces Tp Re( = 0)3, acid and free pyridine or dimethylsulfide, respectively. A likely mechanism involves initial oxidation of 12 to produce [Tp Re( = 0)2H][0Tf] (13) followed by the formation of Tp Re( = 0) (OH)(OTf) (14) via a 1,2-migration of the hydride to an oxo ligand (Scheme 6). Reaction of 14 with a second equivalent of oxidant in the presence of base yields Tp Re( = 0)3 (15). Direct deprotonation of 13 is noted as less likely than the pathway shown in Scheme 6 due to the lack of precedent for acidity of related rhenium hydride systems. [Pg.100]


See other pages where Rhenium-Based Initiators is mentioned: [Pg.170]    [Pg.170]    [Pg.403]    [Pg.105]    [Pg.558]    [Pg.52]    [Pg.121]    [Pg.523]    [Pg.166]    [Pg.156]    [Pg.105]    [Pg.337]    [Pg.347]    [Pg.204]    [Pg.389]    [Pg.219]    [Pg.1502]    [Pg.20]    [Pg.93]    [Pg.5457]    [Pg.62]    [Pg.8]    [Pg.97]    [Pg.204]    [Pg.44]    [Pg.57]    [Pg.154]    [Pg.5456]    [Pg.389]    [Pg.277]    [Pg.146]    [Pg.22]    [Pg.133]    [Pg.222]    [Pg.122]   


SEARCH



Base initiation

Initiator based

© 2024 chempedia.info