Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reversible addition fragmentation termination

While in most of the reports on SIP free radical polymerization is utihzed, the restricted synthetic possibihties and lack of control of the polymerization in terms of the achievable variation of the polymer brush architecture limited its use. The alternatives for the preparation of weU-defined brush systems were hving ionic polymerizations. Recently, controlled radical polymerization techniques has been developed and almost immediately apphed in SIP to prepare stracturally weU-de-fined brush systems. This includes living radical polymerization using nitroxide species such as 2,2,6,6-tetramethyl-4-piperidin-l-oxyl (TEMPO) [285], reversible addition fragmentation chain transfer (RAFT) polymerization mainly utilizing dithio-carbamates as iniferters (iniferter describes a molecule that functions as an initiator, chain transfer agent and terminator during polymerization) [286], as well as atom transfer radical polymerization (ATRP) were the free radical is formed by a reversible reduction-oxidation process of added metal complexes [287]. All techniques rely on the principle to drastically reduce the number of free radicals by the formation of a dormant species in equilibrium to an active free radical. By this the characteristic side reactions of free radicals are effectively suppressed. [Pg.423]

The need to better control surface-initiated polymerization recently led to the development of controlled radical polymerization techniques. The trick is to keep the concentration of free radicals low in order to decrease the number of side reactions. This is achieved by introducing a dormant species in equilibrium with the active free radical. Important reactions are the living radical polymerization with 2,2,4,4-methylpiperidine N-oxide (TEMPO) [439], reversible addition fragment chain transfer (RAFT) which utilizes so-called iniferters (a word formed from initiator, chain transfer and terminator) [440], and atom transfer radical polymerization (ATRP) [441-443]. The latter forms radicals by added metal complexes as copper halogenides which exhibit reversible reduction-oxidation processes. [Pg.217]

Reversible addition-fragmentation chain transfer (RAFT) polymerization using 2,2 -azobisisobutyronitrile and either A, A-dimethyl-5-thiobenzoylthiopropionamide or A-dimethyl-5-thiobenzoylthioacetamide as chain transfer agents has been used to prepare low polydispersity poly(A, A-dimethylacrylamide). The chain transfer agents were unusually effective in suppressing free radical termination reaction, thereby mimicking a living polymerization reaction. [Pg.588]

The bifunctional initiator approach using reversible addition fragmentation chain-transfer polymerization (RAFT) as the free-radical controlling mechanism was soon to follow and block copolymers of styrene and caprolactone ensued [58]. In this case, a trithiocarbonate species having a terminal primary hydroxyl group provided the dual initiation (Figure 13.3). The resultant polymer was terminated with a trithiocarbonate reduction of the trithiocarbonate to a thiol allows synthesis of a-hydroxyl-co-thiol polymers which are of particular interest in biopolymer applications. [Pg.331]

Controlled/ living radical polymerization (CLRP) processes are well-established synthetic routes for the production of well-defined, low-molecular weight-dispersity polymers [99]. The types of CLRP processes (initiator-transfer agent-terminator (INIFERTER), atom transfer radical polymerization (ATRP), nitroxide-mediated radical (NMRP) polymerization, reversible addition-fragmentation transfer (RAFT)) and their characteristics are described in Section 3.8 of Chapter 3 and in Section 14.8 of Chapter 14. [Pg.199]

Anionic and later cationic pol3Tnerization gave most of examples of living pol3rmerization systems until recently, when more sophisticated methods of manipulation with free-radical polymerization processes become available. These methods are based on the use of the compounds which reversibly react with propagating radical and convert it to the so-called dormant species . When the equilibrium between the active and dormant species is regulated by special catalysts based on a transition metal, this process is called atom transfer radical polymerization (ATRP). If this equilibrium is provided by stable radicals such as nitroxides, the process is called stable free-radical polymerization (SFRP). In the case when dormant species are formed via a chain transfer rather than reversible termination reactions, this process is referred to as reversible addition fragmentation chain transfer (RAFT) polymerization. All these techniques allow to produce macromolecules of desired architecture and molecular masses. [Pg.27]

The living radical polymerization (LRP) approach was first introduced in the 1980s. LRP is a type of polymerization in which a chain can only propagate and not undergo irreversible termination or chain transfer. Hence, LRP is an ideal system to produce monodisperse polymers of known molecular weights, architectures and compositions. Reversible addition-fragmentation chain transfer polymerization (RAFT), atom transfer radical... [Pg.63]

Alternatively, Whittaker et al. utilized the reversible oxidation/reduction of a thiol-terminated linear polymer as a homocoupling reaction to access macrocycles that could be reversibly cyclized and cleaved (Scheme 12.5) [29]. The linear precursors were prepared using reversible addition-fragmentation chain transfer (RAFT) polymerization of styrene from a bifunctional initiator (16). The desired polystyrene with thiol end groups could be isolated in near-quantitative yields by aminolysis of the polymer with terminal dithioester groups (17). The linear dithiols... [Pg.356]

Due to the relative ease of control, temperature is one of the most widely used external stimuli for the synthesis of stimulus-responsive bmshes. In this case, thermoresponsive polymer bmshes from poly(N-isopropylacrylamide) (PNIPAM) are the most intensively studied responsive bmshes that display a lower critical solution temperature (LOST) in a suitable solvent. Below the critical point, the polymer chains interact preferentially with the solvent and adopt a swollen, extended conformation. Above the critical point, the polymer chains collapse as they become more solvophobic. Jayachandran et reported the synthesis of PNIPAM homopolymer and block copolymer brushes on the surface of latex particles by aqueous ATRP. Urey demonstrated that PNIPAM brushes were sensitive to temperature and salt concentration. Zhu et synthesized Au-NPs stabilized with thiol-terminated PNIPAM via the grafting to approach. These thermosensitive Au-NPs exhibit a sharp, reversible, dear opaque transition in solution between 25 and 30 °C. Shan et al. prepared PNIPAM-coated Au-NPs using both grafting to and graft from approaches. Lv et al. prepared dual-sensitive polymer by reversible addition-fragmentation chain transfer (RAFT) polymerization of N-isopropylacrylamide from trithiocarbonate groups linked to dextran and sucdnoylation of dextran after polymerization. Such dextran-based dual-sensitive polymer is employed to endow Au-NPs with stability and pH and temperature sensitivity. [Pg.274]


See other pages where Reversible addition fragmentation termination is mentioned: [Pg.184]    [Pg.137]    [Pg.142]    [Pg.176]    [Pg.184]    [Pg.137]    [Pg.142]    [Pg.176]    [Pg.664]    [Pg.63]    [Pg.316]    [Pg.102]    [Pg.231]    [Pg.479]    [Pg.21]    [Pg.552]    [Pg.83]    [Pg.401]    [Pg.6]    [Pg.128]    [Pg.626]    [Pg.316]    [Pg.5]    [Pg.23]    [Pg.22]    [Pg.131]    [Pg.228]    [Pg.143]    [Pg.154]    [Pg.88]    [Pg.9]    [Pg.926]    [Pg.285]    [Pg.12]    [Pg.203]    [Pg.352]    [Pg.415]    [Pg.514]    [Pg.638]    [Pg.13]    [Pg.43]    [Pg.31]   
See also in sourсe #XX -- [ Pg.184 ]

See also in sourсe #XX -- [ Pg.176 ]




SEARCH



Addition reverse

Addition reversible

Addition-fragmentation

Fragmentation additivity

Reverse additives

Reverse-addition chain fragmentation termination

Reversible addition fragmentation termination copolymers

Reversible addition-fragment

Reversible addition-fragmentation

Reversible termination

© 2024 chempedia.info