Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Retention modeling thermodynamic models

Kremer et al. [123] observed the hydrophobic pockets as the binding site on AGP protein. However, more than one binding site was reported. Haupt et al. [124] presented a retention model for the chiral resolution of uncharged solutes, felodipine, on AGP and the model has assumed the presence of two different stereoselective sites for different enantiomers. In another study, Waters et al. [125] carried out certain thermodynamic experiments for the determination of the mechanism of chiral resolution on AGP protein. The authors reported the two... [Pg.254]

As noted, the retention of a polypeptide or protein with HP-IEX sorbents primarily arises from electrostatic interactions between the ionized surface of the polypeptide or protein and the charged surface of the HPLC sorbent. Various theoretical models based on empirical relationships or thermodynamic considerations have been used to describe polypeptide and protein retention, and the involvement of the different ions, in HP-IEC under isocratic and gradient elution conditions (cf. Refs.6,19 33 40,78-90). Over a limited range of ionic strength conditions, the following empirical dependencies derived from the stoichiometric retention model can be used to describe the isocratic and gradient elution relationships between the capacity factor In and the corresponding salt concentration [C,] or the median capacity factor In k ex, and the median salt concentration [C,] of a polypeptide or protein solute, namely,... [Pg.96]

The theory is evidence based it can explain (1) the presence of different theoretical curves when k is plotted as a function of the stationary phase concentrations for different IPRs (2) the influence of IPR concentration on the ratio of the retention of two different analytes and (3) the influence of analyte nature on the klk ratio if the experimental conditions are the same. These experimental behaviors cannot be explained by other genuine electrostatic retention models because they arise from complex formation. The present model was the first to take into account at a thermodynamic level these recently definitively demonstrated equilibria in the mobile phase. [Pg.45]

The first effort to use LSERs in IPC relied on a retention equation based on a mixture of stoichiometric and electrostatic models. Several approximations were made [1-3]. First, ion-pairing in the eluent was neglected, but this is at variance with clear qualitative and quantitative experimental results [4-13]. In Chapter 3 (Section 3.1.1), the detrimental consequences of this assumption were clarified and danonstiated that extensive experimental evidence cannot be rationalized if pairing interactions in the eluent are not taken into account. Furthermore, in the modeling of A as a function of the analyte nature, the presence of the IPR in the eluent was assumed not to influence the retention of neutral analytes. This assumption is only occasionally true [14,15] and the extended thermodynamic retention model of IPC suggests the quantitative relationship between neutral analytes retention and IPC concentration in the eluent [16]. [Pg.57]

Three major areas of investigation in our laboratory using supercritical fluids will be discussed. These entail 1) solute retention modeling using a simple thermodynamic description of retention as a function of pressure at constant temperature in SFC ... [Pg.161]

It is the main aim of semiempirical chromatographic models to couple the empirical parameters of retention with the established thermodynamic quantities generally used in physical chemistry. The validity of a model for chromatographic practice can hardly be overestimated, because it often and successfully helps to overcome the old trial-and-error approach to running the analyses, especially when incorporated in the separation selectivity oriented optimization strategy. [Pg.17]

Consequences of the Snyder and Soczewinski model are manifold, and their praetieal importance is very signifieant. The most speetaeular conclusions of this model are (1) a possibility to quantify adsorbents ehromatographic activity and (2) a possibility to dehne and quantify chromatographic polarity of solvents (known as the solvents elution strength). These two conclusions could only be drawn on the assumption as to the displacement mechanism of solute retention. An obvious necessity was to quantify the effect of displacement, which resulted in the following relationship for the thermodynamic equilibrium constant of adsorption, K,, in the case of an active chromatographic adsorbent and of the monocomponent eluent ... [Pg.19]

The effect of temperature on retention has been described experimentally,(4-8) but the functional dependence of k with temperature has only recently been described.W A thermodynamic model was outlined relating retention as a function of temperature at constant pressure to the volume expansivity of the fluid, the enthalpy of solute transfer between the mobile phase and the stationary phase and the change in the heat capacity of the fluid as a function of temperature.(9) The solubility of a solid solute in a supercritical fluid has been discussed by Gitterman and Procaccia (10) over a large range of pressures. The combination of solute solubility in a fluid with the equation for retention as a function of pressure derived by Van Wasen and Schneider allows one to examine the effect of solubility on solute retention. [Pg.173]

In this work we derive simple relationships between temperature, solute solubility and retention. The simple thermodynamic models developed predict the trend in retention as a function of pressure, given the solubility of the solute in the fluid mobile phase at constant temperature and the trend in k as a function of temperature at constant pressure. Our aim is to examine the complicated dependence of retention on the thermodynamic and physical properties of the solute and the fluid, providing a basis for consideration of more subtle effects in SFC. [Pg.173]

Due to the difficulties of getting analytical solutions, many numerical methods were developed to simulate the solute transport and retention processes in the soil. Deane et al. (1999) analyzed the transport and fate of hydrophobic organic chemicals (HOCs) in consolidated sediments and saturated soils. Walter et al. (1994) developed a model for simulating transport of multiple thermodynamically reacting chemical substances in groundwater systems. Islam et al. (1999) presented a modeling... [Pg.63]


See other pages where Retention modeling thermodynamic models is mentioned: [Pg.318]    [Pg.539]    [Pg.387]    [Pg.397]    [Pg.152]    [Pg.37]    [Pg.101]    [Pg.102]    [Pg.127]    [Pg.190]    [Pg.213]    [Pg.416]    [Pg.588]    [Pg.5]    [Pg.1037]    [Pg.1280]    [Pg.1309]    [Pg.344]    [Pg.64]    [Pg.64]    [Pg.62]    [Pg.783]    [Pg.97]    [Pg.516]    [Pg.619]    [Pg.718]    [Pg.50]    [Pg.41]    [Pg.280]    [Pg.284]    [Pg.285]    [Pg.558]    [Pg.62]    [Pg.180]    [Pg.244]    [Pg.108]    [Pg.155]    [Pg.159]    [Pg.318]   
See also in sourсe #XX -- [ Pg.36 , Pg.41 ]




SEARCH



Extended thermodynamic retention model

Retention modeling

Retention models

Thermodynamic model

Thermodynamic modelings

Thermodynamics modeling

© 2024 chempedia.info