Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Resonance Raman spectroscopy complexes

Hydrogen Abstraction Photoexcited ketone intermolecular hydrogen atom abstraction reactions are an interesting area of research becanse of their importance in organic chemistry and dne to the complex reaction mechanisms that may be possible for these kinds of reactions. Time resolved absorption spectroscopy has typically been nsed to follow the kinetics of these reactions but these experiments do not reveal mnch abont the strnctnre of the reactive intermediates. " Time resolved resonance Raman spectroscopy can be used to examine the structure and properties of the reactive intermediates associated with these reactions. Here, we will briefly describe TR experiments reported by Balakrishnan and Umapathy to study hydrogen atom abstraction reactions in the fluoranil/isopropanol system as an example. [Pg.151]

The functionalization of zinc porphyrin complexes has been studied with respect to the variation in properties. The structure and photophysics of octafluorotetraphenylporphyrin zinc complexes were studied.762 Octabromoporphyrin zinc complexes have been synthesized and the effects on the 11 NMR and redox potential of 2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetraarylporphyrin were observed.763 The chiral nonplanar porphyrin zinc 3,7,8,12,13,17,18-heptabromo-2-(2-methoxyphenyl)-5,10,15,20-tetraphenylporphyrin was synthesized and characterized.764 X-ray structures for cation radical zinc 5,10,15,20-tetra(2,6-dichlorophenyl)porphyrin and the iodinated product that results from reaction with iodine and silver(I) have been reported.765 Molecular mechanics calculations, X-ray structures, and resonance Raman spectroscopy compared the distortion due to zinc and other metal incorporation into meso dialkyl-substituted porphyrins. Zinc disfavors ruffling over doming with the total amount of nonplanar distortion reduced relative to smaller metals.766 Resonance Raman spectroscopy has also been used to study the lowest-energy triplet state of zinc tetraphenylporphyrin.767... [Pg.1216]

The identification of xanthophylls in vivo is a complex task and should be approached gradually with the increasing complexity of the sample. In the case of the antenna xanthophylls, the simplest sample is the isolated LHCII complex. Even here four xanthophylls are present, each having at least three major absorption transitions, 0-0, 0-1, and 0-2 (Figure 7.4). Heterogeneity in the xanthophyll environment and overlap with the chlorophyll absorption add additional complexity to the identification task. No single spectroscopic method seems suitable to resolve the overlapping spectra. However, the combination of two spectroscopic techniques, low-temperature absorption and resonance Raman spectroscopy, has proved to be fruitful (Ruban et al., 2001 Robert et al., 2004). [Pg.119]

Ruban, A.V., Robert, B., and Horton, P. 1995. Resonance Raman spectroscopy of photosystem B light-harvesting complex of green plants. A comparison of trimeric and aggregated states. Biochemistry 34 2333-2337. [Pg.135]

The historical development and elementary operating principles of lasers are briefly summarized. An overview of the characteristics and capabilities of various lasers is provided. Selected applications of lasers to spectroscopic and dynamical problems in chemistry, as well as the role of lasers as effectors of chemical reactivity, are discussed. Studies from these laboratories concerning time-resolved resonance Raman spectroscopy of electronically excited states of metal polypyridine complexes are presented, exemplifying applications of modern laser techniques to problems in inorganic chemistry. [Pg.454]

Measurements of the proximal histidine-iron stretching frequency by Resonance Raman spectroscopy revealed that this bond is very weak in relation to other heme protein systems (vFe.His = 204 cm-1) (130). Formation of the sGC-NO complex labilizes this ligand resulting in the formation of a 5-coordinate high spin iron(II) complex, and the conformational change responsible for the several hundred-fold increase in catalytic activity (126,129,130). [Pg.239]

A variety of physical methods has been used to ascertain whether or not surface ruthenation alters the structure of a protein. UV-vis, CD, EPR, and resonance Raman spectroscopies have demonstrated that myoglobin [14, 18], cytochrome c [5, 16, 19, 21], and azurin [13] are not perturbed structurally by the attachment of a ruthenium complex to a surface histidine. The reduction potential of the metal redox center of a protein and its temperature dependence are indicators of protein structure as well. Cyclic voltammetry [5, 13], differential pulse polarography [14,21], and spectroelectrochemistry [12,14,22] are commonly used for the determination of the ruthenium and protein redox center potentials in modified proteins. [Pg.111]

The bis-hydroxylamine adduct [Fe (tpp)(NH20H)2] is stable at low temperatures, but decomposes to [Fe(tpp)(NO)] at room temperature. [Fe(porphyrin)(NO)] complexes can undergo one-and two-electron reduction the nature of the one-electron reduction product has been established by visible and resonance Raman spectroscopy. Reduction of [Fe(porphyrin)(NO)] complexes in the presence of phenols provides model systems for nitrite reductase conversion of coordinated nitrosyl to ammonia (assimilatory nitrite reduction), while further relevant information is available from the chemistry of [Fe (porphyrin)(N03)]. Iron porphyrin complexes with up to eight nitro substituents have been prepared and shown to catalyze oxidation of hydrocarbons by hydrogen peroxide and the hydroxylation of alkoxybenzenes. ... [Pg.468]

Complexes of the [Ru(bpy)2L] " type in which L is a phen-based ligand are discussed next. Perchlorate salts of [Ru(bpy)2(phen)] + and [Ru(bpy)2(5-Mephen)] + have been prepared and structurally characterized. The steric strain within the coordination sphere is relieved in part by twisting of each bpy ligand. Time-resolved resonance Raman spectroscopy has been used to investigate the localization of the excited electron in the MLCT state of [Ru(bpy)2(4,7-Ph2-phen)] In neutral micelles, the electron is localized on the bpy ligands, but in the presence of DNA and anionic surfactants, it is localized on 4,7-Ph2phen when the complex is in aqueous... [Pg.593]

The photophysical properties of [Ru(TBP)(CO)(EtOH)], [Ru(TBP)(pyz)2], [Ru(TBP)(pyz)] (Fl2TBP = 5,10,15,20-tetra(3,5-tert-butyl-4-hydroxyphenyl)porphyrin) have been investigated by steady-state and time-resolved absorption and emission spectroscopies. The complexes are weakly luminescent, and the origins of this behavior is discussed.Transient Raman spectroscopic data have been reported for [Ru(TPP)(py)2], [Ru(TPP)(CO)(py), and [Ru(TPP)(pip)2] (pip = piperidine),and nanosecond time-resolved resonance Raman spectroscopy has been used to examine the CT excited states of [Ru(0EP)(py)2] and [Ru(TPP)(py)2]. " ... [Pg.652]

Extensive studies of enzyme-substrate complexes by resonance Raman spectroscopy (RR) have prompted the synthesis of new peptide bond modifications such as thionoesters and dithioesters (Scheme l7)t82-83l within simple model substrates. The resulting acyl-enzyme complexes are especially amenable to RR analysis with cysteine proteases such as papain due to formation of the transient dithioester intermediates. [Pg.474]

Resonance Raman spectroscopy in conjunction with low temperature absorption spectroscopy can be used to assign the electronic levels in these complexes.1848... [Pg.485]

Resonance Raman spectroscopy also allows an investigation of the kind of bonding in complexes in general. Whereas in the Raman spectra of tetrathiometalato complexes ([M (WS4)2]2- with M = Pt, Zn), the intensities /R of the v(MS) bands are basically given by /R [v(MSterm)] > 7R[v(MSbr)] (reason higher n bond order in MStenn), the preresonance and resonance Raman spectra can exhibit clear deviations from this rule. (In the interpretation of the spectra it should be kept in mind that v(MSterm) vibrations are more characteristic than v S ), e.g. v,(MSbr) also contains a clear vs(MStemi) component.23)... [Pg.576]

Detailed kinetic exploration of the relaxation of the initially formed radical ion pair would probably be of most utility in addressing the question of the degree of charge separation in exciplex or in radical ion pairs. Rentzepis and coworkers have recently found that in strongly interacting donor-acceptor pairs, for example, indene-chloranil, the initially formed ion pair relaxes within a few picoseconds to an equilibrated solvated complex (67). Time-resolved resonance Raman spectroscopy has also been used recently as a kinetic monitor for radical ion reactivity (68). [Pg.258]


See other pages where Resonance Raman spectroscopy complexes is mentioned: [Pg.275]    [Pg.679]    [Pg.175]    [Pg.123]    [Pg.132]    [Pg.64]    [Pg.286]    [Pg.754]    [Pg.60]    [Pg.114]    [Pg.220]    [Pg.464]    [Pg.442]    [Pg.136]    [Pg.149]    [Pg.368]    [Pg.382]    [Pg.118]    [Pg.169]    [Pg.232]    [Pg.233]    [Pg.66]    [Pg.481]    [Pg.587]    [Pg.661]    [Pg.1303]    [Pg.156]    [Pg.6]    [Pg.1308]    [Pg.253]    [Pg.717]    [Pg.94]    [Pg.84]    [Pg.314]    [Pg.75]    [Pg.440]   
See also in sourсe #XX -- [ Pg.264 ]




SEARCH



Complex resonance

Resonance Raman

Resonant Raman spectroscopy

© 2024 chempedia.info