Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Resolution, dynamic kinetic enzymatic

Hydantoinases belong to the E.C.3.5.2 group of cyclic amidases, which catalyze the hydrolysis of hydantoins [4,54]. As synthetic hydantoins are readily accessible by a variety of chemical syntheses, including Strecker reactions, enantioselective hydantoinase-catalyzed hydrolysis offers an attractive and general route to chiral amino acid derivatives. Moreover, hydantoins are easily racemized chemically or enzymatically by appropriate racemases, so that dynamic kinetic resolution with potential 100% conversion and complete enantioselectivity is theoretically possible. Indeed, a number of such cases using WT hydantoinases have been reported [54]. However, if asymmetric induction is poor or ifinversion ofenantioselectivity is desired, directed evolution can come to the rescue. Such a case has been reported, specifically in the production of i-methionine in a whole-cell system ( . coli) (Figure 2.13) [55]. [Pg.39]

The resolution of racemic ethyl 2-chloropropionate with aliphatic and aromatic amines using Candida cylindracea lipase (CCL) [28] was one of the first examples that showed the possibilities of this kind of processes for the resolution of racemic esters or the preparation of chiral amides in benign conditions. Normally, in these enzymatic aminolysis reactions the enzyme is selective toward the (S)-isomer of the ester. Recently, the resolution ofthis ester has been carried out through a dynamic kinetic resolution (DKR) via aminolysis catalyzed by encapsulated CCL in the presence of triphenylphosphonium chloride immobilized on Merrifield resin (Scheme 7.13). This process has allowed the preparation of (S)-amides with high isolated yields and good enantiomeric excesses [29]. [Pg.179]

Ue 7.13 Dynamic kinetic resolution of 2-Chloropropionate by enzymatic aminolysis. [Pg.179]

Dynamic kinetic resolution of racemic ketones proceeds through asymmetric reduction when the substrate does racemize and the product does not under the applied experimental conditions. Dynamic kinetic resolution of a-alkyl P-keto ester has been performed through enzymatic reduction. One isomer, out of the four possible products for the unselective reduction (Figure 8.38), can be selectively synthesized using biocatalyst, and by changing the biocatalyst or conditions, all of the isomers can be selectively synthesized [29]. [Pg.221]

For most chemical transformations, especially for industrial applications, the yield of 50% cannot be accepted. Since each enantiomer constitutes only 50% of the racemic mixture, the best way to increase the yield of the desired enantiomer is racemization of the unwanted one (Scheme 5.7). This reaction mustproceed simultaneously with the enzymatic kinetic resolution. In order to indicate the dynamic character of such processes, the term dynamic kinetic resolution has been introduced. [Pg.102]

Scheme 5.11 Dynamic kinetic resolution of alcohol 18 by combination of enzymatic transesterification and ruthenium-catalyzed racemization. Scheme 5.11 Dynamic kinetic resolution of alcohol 18 by combination of enzymatic transesterification and ruthenium-catalyzed racemization.
Catalytic transformation based on combined enzyme and metal catalysis is described as a new class of methodology for the synthesis of enantiopure compounds. This approach is particularly useful for dynamic kinetic resolution in which enzymatic resolution is coupled with metal-catalyzed racemization for the conversion of a racemic substrate to a single enantiomeric product. [Pg.59]

When a reverse procedure was applied, i.e. enzymatic acetylation of racemic 3, formed in situ from the appropriate aldehydes and thiols, the reaction proceeded under the conditions of dynamic kinetic resolution and gave enantiomerically enriched acetates 2 with 65-90% yields and with ees up to 95% (Equation 2). It must be mentioned that the addition of silica proved crucial, as in its absence no racemization of the initially formed substrates 3 occurred and the reaction stopped at the 50% conversion. [Pg.161]

Interestingly, for the transformation of both the racemic 1-hydroxyalkanephosphonates 41 and 2-hydroxyalkanephosphonates 43 into almost enantiopure acetyl derivatives 42 and 44, respectively, a dynamic kinetic resolution procedure was applied. Pamies and BackvalP used the enzymatic kinetic resolution in combination with a ruthenium-catalysed alcohol racemization and obtained the appropriate O-acetyl derivatives in high yields and with almost full stereoselectivity (Equation 25, Table 5). It should be mentioned that lowering... [Pg.177]

In carrying out kinetic resolution, these in the standard approach are limited to 50% yield regarding the racemate. However, different approaches were developed [28] to overcome this limitation. The classical standard solution is to reracemize the unconverted enantiomer. A more advanced solution is the establishment of a dynamic kinetic resolution that has considerably expanded the synthetic scope of chemical processes. Here, the unconverted enantiomer is, in contrast to the latter method, racemized in situ. A great number of novel enzymatic methods have been developed [29]. Within this chapter, process solutions for enzymatic resolutions of racemic mixtures will be highlighted. [Pg.84]

Hoyos, P., Buthe, A., Ansorge-Schumacher, M.B. et al. (2008) Highly efficient one pot dynamic kinetic resolution of benzoins with entrapped Pseudomonas stutzeri lipase. Journal of Molecular Catalysis B, Enzymatic, 52-53,133-139. [Pg.101]

Ji, A., Wolberg, M., Wandrey, C. et al. (2001) Dynamic kinetic resolution of tert-butyl 4-methyl-3,5-dioxohexanoate through enzymatic reduction. Chemical Communications (Cambridge) (1), 57-58. [Pg.164]

After some early examples of bio-chemo combinations in the 1980s, there was then over a decade of silence , followed by clearly increasing interest from the mid-1990s in the field of dynamic kinetic resolution processes (i.e., chemocata-lyzed racemization combined with enantioselective enzymatic conversion, giving, in principle, 100% yield of an optically pure compound). [Pg.278]

Dynamic kinetic resolution enables the limit of 50 % theoretical yield of kinetic resolution to be overcome. The application of lipase-catalyzed enzymatic resolution with in situ thiyl radical-mediated racemization enables the dynamic kinetic resolution of non-benzylic amines to be obtained. This protocol leads to (/f)-amides with high enantioselectivities. It can be applied either to the conversion of racemic mixtures or to the inversion of (5)-enantiomers. [Pg.153]

Dynamic kinetic resolution (DKR) is a process in which the resolution process is coupled with in situ racemization of unreacted substrate. This has been shown to be a potential and feasible method to produce 100 % theoretical yield. We have developed a chemo-enzymatic DKR to obtain higher desired yield for (5)-ibuprofen. The combined base catalyst with lipase has resulted in high conversion and excellent ee of the product. [Pg.157]

Enzymes may be used either directly for chiral synthesis of the desired enantiomer of the amino acid itself or of a derivative from which it can readily be prepared, or for kinetic resolution. Resolution of a racemate may remove the unwanted enantiomer, leaving the intended product untouched, or else the reaction may release the desired enantiomer from a racemic precursor. In either case the apparent disadvantage is that the process on its own can only yield up to 50% of the target compound. However, in a number of processes the enzyme-catalyzed kinetic resolution is combined with a second process that re-racemizes the unwanted enantiomer. This may be chemical or enzymatic, and in the latter case, the combination of two simultaneous enzymatic reactions can produce a smooth dynamic kinetic resolution leading to 100% yield. [Pg.72]

Dynamic kinetic resolution (DKR) is an attractive protocol for the production of enantiopure compounds from racemic mixtures [45]. The concept of DKR is illustrated in Scheme 5.13. In many cases, DKRs are accomplished by the combination of enzymatic resolution and transition-metal-catalyzed racemization based on hydrogen transfer. Thus, the use of Cp Ir complexes as catalysts for racemization in DKR can be anticipated. [Pg.118]

There are basically two approaches to the synthesis of enantiomerically pure alcohols (i) kinetic resolution of the racemic alcohol using a hydrolase (lipase, esterase or protease) or (ii) reduction mediated by a ketoreductase (KRED). Both of these processes can be performed as a cascade process. The first approach can be performed as a dynamic kinetic resolution (DKR) by conducting an enzymatic transesterification in the presence of a redox metal [e.g. a Ru(ll) complex] to catalyze in situ racemization of the unreacted alcohol isomer [11] (Scheme 6.1). We shall not discuss this type of process in any detail here since it forms the subject of Chapter 1. [Pg.112]

This indeed verifies the dynamic kinetic resolution of roc-3 through enzymatic reduction, representing the first example for the dynamic kinetic resolution of an open-chain 2-alkyl-substituted 1,3-diketone through reduction under neutral conditions. [Pg.389]

It should be mentioned that the great majority of dynamic kinetic resolutions reported so far are carried out in organic solvents, whereas all cyclic deracemizations are conducted in aqueous media. Therefore, formally, this latter methodology would not fit the scope of this book, which is focused on the synthetic uses of enzymes in non-aqueous media. However, to fully present and discuss the applications and potentials of chemoenzymatic deracemization processes for the synthesis of enantiopure compounds, chemoenzymatic cyclic de-racemizations will also be briefly treated in this chapter, as well as a small number of other examples of enzymatic DKR performed in water. [Pg.114]

Scheme 7.8 Dynamic kinetic resolution of racemic alcohols by the combination of transition metal catalysis with enzymatic acylation. Scheme 7.8 Dynamic kinetic resolution of racemic alcohols by the combination of transition metal catalysis with enzymatic acylation.
Enzymatic resolution of racemic secondary alcohols by enantiomer-selective acylation gives optically pure compounds with up to 50% yield [332], When this method is coupled with the principle of dynamic kinetic resolution (see Section 1.4.1.5), the theoretical yield increases to 100%. Thus a reaction system consisting of an achiral transition-metal catalyst for racemization, a suitable enzyme, acetophenone, and an acetyl donor allows the transformation of racemic 1-phenylethanol to the R acetates with an excellent ee (Scheme 1.93) [333]. The presence of one equiv. of acetophenone is necessary to promote the alcohol racemization catalyzed by the... [Pg.80]

Kinetic resolutions in general are regularly applied in organic synthesis. Since enzymes are highly attractive for asymmetric synthesis, various types of biocatalysts have been used in enzymatic (dynamic) kinetic resolutions, but the focus will remain on lipase- and esterase-mediated resolutions as the most common tools in early steps of natural product syntheses. [Pg.7]

Australian Penicillium striatisporum strain (Fig. 5) [68]. Before, neither a synthetic approach, nor the absolute configuration of this butenolide had been reported. Combining the enzymatic kinetic resolution with a palladium(II)-mediated racemization [69] could lead to a highly efficient dynamic kinetic resolution (DKR) of allenes. [Pg.9]

Fig. 11 Two-compartment enzymatic dynamic kinetic resolution of acyloins... Fig. 11 Two-compartment enzymatic dynamic kinetic resolution of acyloins...
Spelberg JHL, Tang L et al (2004) Enzymatic dynamic kinetic resolution of epihalohydrins. Tetrahedron Asymmetry 15 1095-1102... [Pg.41]

Resolution of cheap racemic mixtures with enzymes is a common route to enantiomerically pure chemicals on an industrial scale. However, the yield with a classical resolution is limited to 50%. An in situ racemization of the undesired enantiomer, combined with the enzymatic kinetic resolution, gives rise to a dynamic kinetic resolution (DKR) that should in principle lead to a 100% yield in the desired isomer. In spite of several Ru and Pd homogeneous systems successfully combined with enzymes and successfully applied on industrial scale in DKR [71, 72], few metal-based heterogeneous catalysts active for alcohol racemization have been reported [19, 73, 74]. [Pg.331]

It is worth mentioning the emergence of sequential catalytic processes involving a ruthenium-catalyzed step followed by a catalytic enzymatic transformation. This strategy has been developed by the groups of J.E. Backvall, and M.-J. Kim and J. Park especially for the dynamic kinetic resolution of alcohols (Scheme 50) [107-109]. [Pg.323]

A straightforward approach to avoid low yields is to perform the reaction as a dynamic kinetic resolution. Racemisation can be achieved chemically [33] or enzymatically, indeed a number of N-acyl amino acid racemases have been described and it has been demonstrated that they could be employed together with the l-N-acyl amino acylase for the production of optically pure methionine [81]. [Pg.280]

The resolution of racemic compounds mediated by enzymes has become a valuable tool for the synthesis of chiral intermediates. In most cases, however, only one enantiomer of the intermediate is required for the next step in the synthesis thus, the unwanted isomer must be either discarded or racemized for reuse in the enzymatic resolution process. Dynamic kinetic resolution is one way of avoiding this problem the unwanted enantiomer is racemized during the selective enzymatic process and serves as fresh starting material in the resolution. [Pg.172]


See other pages where Resolution, dynamic kinetic enzymatic is mentioned: [Pg.97]    [Pg.327]    [Pg.328]    [Pg.77]    [Pg.139]    [Pg.155]    [Pg.162]    [Pg.3]    [Pg.181]    [Pg.169]    [Pg.174]    [Pg.196]    [Pg.608]    [Pg.342]    [Pg.281]    [Pg.175]    [Pg.379]   


SEARCH



Dynamic kinetic resolution

Dynamic resolutions

Enzymatic kinetic resolution

Enzymatic kinetics

Enzymatic resolution

Kinetic dynamic

Kinetic enzymatic

Kinetic resolutions dynamic resolution

Kinetics dynamic kinetic resolution

© 2024 chempedia.info