Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Relationship with mineral extraction

Elucidation of the exact nature of the surface layers and their relationship with the coating conditions has proven to be difficult. The current understanding is that silane layers on mineral surfaces are thicker than the postulated theoretical silane mono-layer (see Figure 4.5). Such layers are very complex and depend on the nature of the coating conditions, the type of the mineral surface and the chemistry of the reactive functionalities present. A kind of ladder structure has been postulated to form on some fillers [19a]. In general, it is knovm that silane layers, as they are normally formed (and before the incorporation of the treated mineral in a composite), consist of a mixture of chemisorbed and physiosorbed material. The physiosorbed silane is readily removable by solvent washing, whereas the chemisorbed silane is not extractable. [Pg.70]

Spectroscopic techniques have received increased attention for the study of natural organic matter (NOM) over the past decades (Hatcher et al., 2001 Abbt-Braun et al., 2004). Such techniques allow the determination of molecular speciation in many cases without the need for extractions, derivatization, or hydrolysis. Spectroscopy is generally less selective in nature than for example chemical extraction techniques, even of chemically or thermally recalcitrant compounds (Frimmel et al., 2002 Haberstroh et al., 2006), though important restrictions for specific bonds apply for some spectroscopic techniques. Equally important are the potentials to investigate the spatial relationships between NOM and mineral phases, surface properties and alteration, and micro-scale heterogeneity within NOM. With improved capabilities and access to synchrotron facilities, worldwide efforts in applying an entire range of powerful spectroscopic tools have proliferated in all areas of science. [Pg.730]

Figures 1 and 2 show relationships among concentrations of U and selected major and trace elements in spinach leaves and petioles, respectively. It is noteworthy that concentrations of U in spinach were significantly positively correlated (p<0.01) with concentrations of Fe and A1 in both leaves and petioles. These relationships suggested that the absorption and transport processes of U in spinach could be related to those of Fe and Al, as was also suggested by Kametani et al. who showed that plants with higher Fe concentrations tended to absorb more U. Less U was extracted by 1 mol L ammonium acetate solution from soil (Table 2), meaning that U in soil was less available to plants. Spinach favours neutral-to-weak alkaline conditions and has the ability to acquire insoluble mineral nutrients such as Fe under neutral-to-alkaline conditions. Helal et al. compared spinach and beans with respect to the ability of the root to uptake Fe and found that spinach root absorbed Fe more efficiently. The differences in Cu, Zn, and Cd uptake by two spinach cultivars were attributed to different abilities to exude oxalate, citrate, and malate from root l The application of organic acids to soil facilitated the phytoextraction of U by hyperaccumulator plants thus, those root exudates could induce U dissolution from soil. Since part of U is associated with Fe and Al minerals in the soil it was likely that the absorption of U was accompanied by Fe and Al absorption, possibly triggered by the secretion of protons or organic acids to solubilise Fe and Al from soil. Figures 1 and 2 show relationships among concentrations of U and selected major and trace elements in spinach leaves and petioles, respectively. It is noteworthy that concentrations of U in spinach were significantly positively correlated (p<0.01) with concentrations of Fe and A1 in both leaves and petioles. These relationships suggested that the absorption and transport processes of U in spinach could be related to those of Fe and Al, as was also suggested by Kametani et al. who showed that plants with higher Fe concentrations tended to absorb more U. Less U was extracted by 1 mol L ammonium acetate solution from soil (Table 2), meaning that U in soil was less available to plants. Spinach favours neutral-to-weak alkaline conditions and has the ability to acquire insoluble mineral nutrients such as Fe under neutral-to-alkaline conditions. Helal et al. compared spinach and beans with respect to the ability of the root to uptake Fe and found that spinach root absorbed Fe more efficiently. The differences in Cu, Zn, and Cd uptake by two spinach cultivars were attributed to different abilities to exude oxalate, citrate, and malate from root l The application of organic acids to soil facilitated the phytoextraction of U by hyperaccumulator plants thus, those root exudates could induce U dissolution from soil. Since part of U is associated with Fe and Al minerals in the soil it was likely that the absorption of U was accompanied by Fe and Al absorption, possibly triggered by the secretion of protons or organic acids to solubilise Fe and Al from soil.

See other pages where Relationship with mineral extraction is mentioned: [Pg.47]    [Pg.261]    [Pg.265]    [Pg.148]    [Pg.200]    [Pg.334]    [Pg.104]    [Pg.546]    [Pg.141]    [Pg.759]    [Pg.68]    [Pg.214]    [Pg.291]    [Pg.114]    [Pg.286]    [Pg.43]    [Pg.175]    [Pg.306]    [Pg.139]    [Pg.33]    [Pg.1066]    [Pg.1632]    [Pg.4002]    [Pg.313]    [Pg.191]    [Pg.148]    [Pg.13]    [Pg.84]    [Pg.251]    [Pg.366]    [Pg.165]    [Pg.164]    [Pg.353]    [Pg.39]    [Pg.230]    [Pg.1395]    [Pg.132]    [Pg.283]    [Pg.383]    [Pg.181]    [Pg.234]    [Pg.115]    [Pg.2859]    [Pg.322]   


SEARCH



Relationships with

© 2024 chempedia.info