Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reduction of enol derivatives

A more comprehensive discussion of the reduction of enol derivatives can be found in Chapter 4.6, this volume. [Pg.910]

The efficiency of reduction of benzophenone derivatives is greatly diminished when an ortho alkyl substituent is present because a new photoreaction, intramolecular hydrogen-atom abstraction, then becomes the dominant process. The abstraction takes place from the benzylic position on the adjacent alkyl chain, giving an unstable enol that can revert to the original benzophenone without photoreduction. This process is known as photoenolization Photoenolization can be detected, even though no net transformation of the reactant occurs, by photolysis in deuterated hydroxylic solvents. The proton of the enolic hydroxyl is rapidly exchanged with solvent, so deuterium is introduced at the benzylic position. Deuterium is also introduced if the enol is protonated at the benzylic carbon by solvent ... [Pg.755]

The application of the Birch reduction to ethers of estradiol by A. J. Birch opened up the area of 19-norsteroids to intensive research. The major Birch reduction product is an enol ether which affords either a 3-keto-A -or a 3-keto-A -19-norsteroid depending upon the hydrolysis conditions. Various 19-norsteroids have been found to have useful clinical activity compounds (30), (31), and (32) are oral contraceptive agents and compound (33) has been used as an oral anabolic agent. Several of these compounds were prepared on an industrial scale for a number of years by the Birch reduction of estradiol derivatives. [Pg.11]

Birch reduction of acid derivatives is even more productive if the first-formed enolate (as 66) is used as a nucleophile. Our example also links this chapter with the last as a Cope rearrangement is featured. A group of alkaloids including mesembrine have the bicyclic structure 89. Removing the structural nitrogen atom by standard disconnections (chapters 6 and 8) leaves the carbon skeleton 91 that does not immediately look a Birch reduction product. [Pg.276]

Oxidation of the dienolate of (17) with (+)-( ) affords a-hydroxy ester (18), a key intermediate in the enantioselective synthesis of the antibiotic echinosporin (eq 19) whereas oxidation of enolates derived from 1,3-dioxin vinylogous ester (19) gives rise to both a - and y-hydroxylation depending on the reaction conditions (eq 20). With (+)-( ) the lithium enolate of (19) gives primarily the a -hydroxylation product (20), while the sodium enolate gives )/-hydroxylation product (21). Only low levels of asymmetric induction (ca. 16% ee) are found in these oxidations. Birch reduction products are also asymmetrically hydroxylated in situ by (+)-( ) (eq 21). ... [Pg.186]

The radicals that are formed from the enolate in this process are rapidly destroyed so that only the stable semidione species remains detectable for EPR study. Semidiones can also be generated oxidatively from ketones by reaction with oxygen in the presence of base. The diketone is presumably generated oxidatively and then reduced to the semidione via reduction by the enolate derived from the original ketone. [Pg.682]

The Y appendage of 2-cyclohexenone 191 cannot be directly disconnected by an alkylation transform. (y-Extended enolates derived from 2-cyclohexenones undergo alkylation a- rather than y- to the carbonyl group). However, 191 can be converted to 192 by application of the retro-Michael transform. The synthesis of 192 from methoxybenzene by way of the Birch reduction product 193 is straightforward. Another synthesis of 191 (free acid) is outlined in... [Pg.71]

The double bond migration which normally occurs on forming ethylene ketals from A -3-ketones has frequently been utilized to form derivatives of the A -system. The related transformation of A -3-ketones into A -3-alcohols is usually accomplished by treatment of the enol acetate (171) (X = OAc) with borohydride. This sequence apparently depends on reduction of the intermediate (172) taking place faster than conjugation ... [Pg.360]

When a cold (-78 °C) solution of the lithium enolate derived from amide 6 is treated successively with a,/ -unsaturated ester 7 and homogeranyl iodide 8, intermediate 9 is produced in 87% yield (see Scheme 2). All of the carbon atoms that will constitute the complex pentacyclic framework of 1 are introduced in this one-pot operation. After some careful experimentation, a three-step reaction sequence was found to be necessary to accomplish the conversion of both the amide and methyl ester functions to aldehyde groups. Thus, a complete reduction of the methyl ester with diisobutylalu-minum hydride (Dibal-H) furnishes hydroxy amide 10 which is then hydrolyzed with potassium hydroxide in aqueous ethanol. After acidification of the saponification mixture, a 1 1 mixture of diastereomeric 5-lactones 11 is obtained in quantitative yield. Under the harsh conditions required to achieve the hydrolysis of the amide in 10, the stereogenic center bearing the benzyloxypropyl side chain epimerized. Nevertheless, this seemingly unfortunate circumstance is ultimately of no consequence because this carbon will eventually become part of the planar azadiene. [Pg.467]

It was anticipated that two of the three stereochemical relationships required for intermediate 12 could be created through reaction of the boron enolate derived from imide 21 with a-(benzyloxy)ace-taldehyde 24. After conversion of the syn aldol adduct into enone 23, a substrate-stereocontrolled 1,2-reduction of the C-5 ketone car-... [Pg.490]

Scheme 5 details the asymmetric synthesis of dimethylhydrazone 14. The synthesis of this fragment commences with an Evans asymmetric aldol condensation between the boron enolate derived from 21 and trans-2-pentenal (20). Syn aldol adduct 29 is obtained in diastereomerically pure form through a process which defines both the relative and absolute stereochemistry of the newly generated stereogenic centers at carbons 29 and 30 (92 % yield). After reductive removal of the chiral auxiliary, selective silylation of the primary alcohol furnishes 30 in 71 % overall yield. The method employed to achieve the reduction of the C-28 carbonyl is interesting and worthy of comment. The reaction between tri-n-butylbor-... [Pg.492]


See other pages where Reduction of enol derivatives is mentioned: [Pg.355]    [Pg.447]    [Pg.355]    [Pg.447]    [Pg.210]    [Pg.207]    [Pg.85]    [Pg.201]    [Pg.112]    [Pg.207]    [Pg.788]    [Pg.112]    [Pg.18]    [Pg.220]    [Pg.472]    [Pg.87]    [Pg.103]    [Pg.208]    [Pg.227]    [Pg.234]    [Pg.525]    [Pg.163]    [Pg.283]    [Pg.10]    [Pg.32]    [Pg.34]    [Pg.126]    [Pg.190]    [Pg.76]    [Pg.431]    [Pg.492]    [Pg.620]    [Pg.636]    [Pg.777]    [Pg.154]   
See also in sourсe #XX -- [ Pg.355 ]

See also in sourсe #XX -- [ Pg.355 ]




SEARCH



Derivatives, reduction

© 2024 chempedia.info