Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reduction methylene

Thus, the presence of a thiamine ring in Cl Sulfur Blue 9 was conclusively proved. The thiamine ring is the fundamental chromophore that accounts for the high color value of both the sulfur dye and Methylene Blue [61-73-4] including their abiUty to form pale yeUow leuco forms on reduction. Methylene Violet (15) is obtained from Methylene Blue (16) by hydrolysis in boiling alkah. [Pg.165]

Methylene bromide (CHjBfj) and methylene iodide (CHjIj) are easily prepared by the reduction of bromoform or iodoform respectively with sodium arsenite in alkaline solution ... [Pg.300]

Methylene chloride CHjCl, b.p. 41°, is obtained as a by product in the com mercial preparation of chloroform by the reduction of carbon tetrachloride with moist iron and also as one of the products in the chlorination of methane it is a useful extraction solvent completely immiscible with water. [Pg.300]

Trimethylene dibromide (Section 111,35) is easily prepared from commercial trimethj lene glycol, whilst hexamethylene dibromide (1 O dibromohexane) is obtained by the red P - Br reaction upon the glycol 1 6-hexanediol is prepared by the reduction of diethyl adipate (sodium and alcohol lithium aluminium hydride or copper-chromium oxide and hydrogen under pressure). Penta-methylene dibromide (1 5-dibromopentane) is readily produced by the red P-Brj method from the commercially available 1 5 pentanediol or tetra-hydropyran (Section 111,37). Pentamethylene dibromide is also formed by the action of phosphorus pentabromide upon benzoyl piperidine (I) (from benzoyl chloride and piperidine) ... [Pg.489]

Reduction of the ethylenic compound gives a ketone, propiophenone (III), with one more methylene group than the ketone used in the original preparation ... [Pg.911]

Direct Borohydride Reduction of Alcohols to Alkanes with Phosphonium Anhydride Activation N-Proovlbenzene. To a solution of 5.56 g (20 mmol) of triphenylphosphine oxide in 30mL of dry methylene chloride at CfC was added dropwise a solution of 1.57 mL (10 mmol) of triflic anhydride in 30mL of dry methylene chloride. After 15 min when the precipitate appeared, a solution of 1.36g (10 mmol) of 3-phenyl-1-propanol in 10 mL of dry methylene chloride was added and the precipitate vanished in 5 min. An amount of 1.5g (40 mmol) of sodium borohydride was added as a solid all at once and the slurry was stirred at room temperature for... [Pg.203]

There are, however, two useful alkylating-redudng methods. One is the methylenation of the ester carbonyl group with Tebbe s reagent, the other is the conversion of thionolactones to cyclic thioketals and subsequent reduction. [Pg.110]

The acylpalladium complex formed from acyl halides undergoes intramolecular alkene insertion. 2,5-Hexadienoyl chloride (894) is converted into phenol in its attempted Rosenmund reduction[759]. The reaction is explained by the oxidative addition, intramolecular alkene insertion to generate 895, and / -elimination. Chloroformate will be a useful compound for the preparation of a, /3-unsaturated esters if its oxidative addition and alkene insertion are possible. An intramolecular version is known, namely homoallylic chloroformates are converted into a-methylene-7-butyrolactones in moderate yields[760]. As another example, the homoallylic chloroformamide 896 is converted into the q-methylene- -butyrolactams 897 and 898[761]. An intermolecular version of alkene insertion into acyl chlorides is known only with bridgehead acid chlorides. Adamantanecarbonyl chloride (899) reacts with acrylonitrile to give the unsaturated ketone 900[762],... [Pg.260]

The second step is a reduction of the carbonyl group (C=0) to a methylene group (CH2)... [Pg.486]

The two step acylation-reduction sequence is required Acylation of benzene puts the side chain on the ring with the correct carbon skeleton Clemmensen reduc tion converts the carbonyl group to a methylene group... [Pg.487]

Both the Clemmensen and the Wolff-Kishner reductions are designed to carry out a specific functional group transformation the reduction of an aldehyde or ketone carbonyl to a methylene group Neither one will reduce the carbonyl group of a carboxylic acid nor... [Pg.487]

Two methods for converting carbonyl groups to methylene units are the Clem mensen reduction (zinc amalgam and con centrated hydrochloric acid) and the Wolff-Kishner reduction (heat with hydra zine and potassium hydroxide in a high boiling alcohol)... [Pg.713]

Reduction of amides (Section 22 9) Lithi um aluminum hydride reduces the car bonyl group of an amide to a methylene group Primary secondary or tertiary amines may be prepared by proper choice of the starting amide R and R may be ei ther alkyl or aryl... [Pg.957]

Clemmensen reduction (Section 12 8) Method for reducing the carbonyl group of aldehydes and ketones to a methylene... [Pg.1279]

Carbonyl deductions. The classical Wolff-Kishner reduction of ketones (qv) and aldehydes (qv) involves the intermediate formation of a hydrazone, which is then decomposed at high temperatures under basic conditions to give the methylene group, although sometimes alcohols may form (40). [Pg.277]

The methylene blue and resazurin reduction methods indirectly measure bacterial densities in milk and cream in terms of the time interval required, after starting incubation, for a dye—milk mixture to change color (methylene blue, from blue to white resazurin, from blue through purple and mauve to... [Pg.363]

Contaminants and by-products which are usually present in 2- and 4-aminophenol made by catalytic reduction can be reduced or even removed completely by a variety of procedures. These include treatment with 2-propanol (74), with aUphatic, cycloaUphatic, or aromatic ketones (75), with aromatic amines (76), with toluene or low mass alkyl acetates (77), or with phosphoric acid, hydroxyacetic acid, hydroxypropionic acid, or citric acid (78). In addition, purity may be enhanced by extraction with methylene chloride, chloroform (79), or nitrobenzene (80). [Pg.311]

Other Applications. Hydroxylamine-O-sulfonic acid [2950-43-8] h.2is many applications in the area of organic synthesis. The use of this material for organic transformations has been thoroughly reviewed (125,126). The preparation of the acid involves the reaction of hydroxjlamine [5470-11-1] with oleum in the presence of ammonium sulfate [7783-20-2] (127). The acid has found appHcation in the preparation of hydra2ines from amines, aUphatic amines from activated methylene compounds, aromatic amines from activated aromatic compounds, amides from esters, and oximes. It is also an important reagent in reductive deamination and specialty nitrile production. [Pg.103]

The isolation of the 6-deoxytetracyclines (44) led to other chemical modifications of (1). 6P-Deoxytetracycline [5614-03-9] (13), prepared by catalytic hydrogenolysis of tetracycline (1), resulting ia an iaversion (45) of the configuration at the C-6 position, but retention of antibacterial activity. Catalytic reduction (7,8) of the 6-methylene derivative (14) yields both the 6a-methyl (15) and 6P-methyl compound (13). The 6a-isomer (15) is reported (7,45) to be more active than the 6P isomer (13). The a-isomer, doxycycline (6), is an example of a semisynthetic tetracycline that has become commercially useful. [Pg.179]

Chloroform can be reduced to methane with 2inc dust and aqueous alcohol. In the presence of a catalyst or ammonia, the reduction yields methylene chloride as well as methane. [Pg.524]

Cyclohexanone shows most of the typical reactions of aUphatic ketones. It reacts with hydroxjiamine, phenyUiydrazine, semicarbazide, Grignard reagents, hydrogen cyanide, sodium bisulfite, etc, to form the usual addition products, and it undergoes the various condensation reactions that are typical of ketones having cx-methylene groups. Reduction converts cyclohexanone to cyclohexanol or cyclohexane, and oxidation with nitric acid converts cyclohexanone almost quantitatively to adipic acid. [Pg.426]


See other pages where Reduction methylene is mentioned: [Pg.272]    [Pg.272]    [Pg.143]    [Pg.354]    [Pg.354]    [Pg.272]    [Pg.272]    [Pg.143]    [Pg.354]    [Pg.354]    [Pg.107]    [Pg.342]    [Pg.463]    [Pg.87]    [Pg.109]    [Pg.156]    [Pg.208]    [Pg.251]    [Pg.426]    [Pg.499]    [Pg.481]    [Pg.183]    [Pg.361]    [Pg.395]    [Pg.51]    [Pg.43]    [Pg.177]    [Pg.521]    [Pg.125]    [Pg.256]   
See also in sourсe #XX -- [ Pg.191 , Pg.337 ]




SEARCH



Methylene blue reduction

Methylene reductic acid, formation

Reduction carbonyl methylenation step

Reduction to Methylene Halides

Reductive Deoxygenation of Carbonyl Groups to Methylene

© 2024 chempedia.info