Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Redistributive coupling

Dehydrocoupling, Redistributive Coupling, and Addition of Main Group 4 Hydrides... [Pg.143]

B. Redistributive Coupling of Bis(silyl)phenylenes to Hyperbranched Polymers. 159... [Pg.143]

D. Redistributive Coupling of Hydrostannanes to Highly Branched Polystannanes. 161... [Pg.143]

It follows that there are two kinds of processes required for an arbitrary initial state to relax to an equilibrium state the diagonal elements must redistribute to a Boltzmaim distribution and the off-diagonal elements must decay to zero. The first of these processes is called population decay in two-level systems this time scale is called Ty The second of these processes is called dephasmg, or coherence decay in two-level systems there is a single time scale for this process called T. There is a well-known relationship in two level systems, valid for weak system-bath coupling, that... [Pg.233]

IVR in tlie example of the CH clnomophore in CHF is thus at the origin of a redistribution process which is, despite its coherent nature, of a statistical character. In CHD, the dynamics after excitation of the stretching manifold reveals a less complete redistribution process in the same time interval [97]. The reason for this is a smaller effective coupling constant between the Fenni modes of CHD (by a factor of four) when... [Pg.1072]

Polymerization Mechanism. The mechanism that accounts for the experimental observations of oxidative coupling of 2,6-disubstituted phenols involves an initial formation of aryloxy radicals from oxidation of the phenol with the oxidized form of the copper—amine complex or other catalytic agent. The aryloxy radicals couple to form cyclohexadienones, which undergo enolization and redistribution steps (32). The initial steps of the polymerization scheme for 2,6-dimethylphenol are as in equation 6. [Pg.328]

In equation 7, ttimer radical (4) is produced when (3) dissociates. Whenever (4) couples with the other product of equation 7, ie, the 2,6-dimethylphenoxy radical, the tetramer is produced as described. These redistribution reactions of oligomers that proceed by ketal formation and subsequent dissociation ultimately generate terminal quinol ethers which enolize to the more stable terminal phenol (eq. 8). [Pg.329]

The halogen displacement polymerization proceeds by a combination of the redistribution steps described for oxidative coupling polymerization and a sequence in which a phenoxide ion couples with a phenoxy radical (eq. 11) and then expels a bromide ion. The resultant phenoxy radical can couple with another phenoxide in a manner that is analogous to equation 11 or it can redistribute with other aryloxy radicals in a process analogous to equations 7 and 8. [Pg.329]

The surface in Fig. 12 demonstrates that there is little coupling between the C—F translation coordinate and the bending coordinate of the complex. Stated another way, the time scale for intramolecular vibrational redistribution between these coordinates is slow compared to the time scale for breaking the C—F bond. These conclusions are not obvious upon examination of the minimum energy path shown in Fig. 11, and indeed such diagrams, while generally instructive, can lead to improper conclusions because they hide the multidimensional nature of the true PFS. A central assumption of statistical product distribution theories... [Pg.248]

Recently [7] we constructed an example showing that interfacial flexibility can cause instability of the uniform state. Two elastic capacitors, C and C2, were connected in parallel. The total charge was fixed, but it was allowed to redistribute between C and C2. It was shown that if the interface was absolutely soft , i.e., contraction of the two gaps was not coupled, the uniform distribution became unstable at precisely the point where the dimensionless charge density s reached the critical value, = (2/3). In other words, the uniform distribution became unstable at the point where, under a control,... [Pg.80]

Figure 4 shows the application (6) of potentials to the Pt and Au electrodes of the sandwich (vs. a reference electrode elsewhere in the contacting electrolyte solution) so that they span the E° of the poly-[Co(II/I)TPP] couple (Fig. 4B). There is a consequent redistribution of the concentrations of the sites in the two oxidation states to achieve the steady state linear gradients shown in the inset. Figure 4C represents surface profilometry of a different film sample in order to determine the film thickness from that the actual porphyrin site concentration (0.85M). The flow of self exchange-supported current is experimentally parameterized by applying Fick s first law to the concentration-distance diagram in Fig. 4B ... Figure 4 shows the application (6) of potentials to the Pt and Au electrodes of the sandwich (vs. a reference electrode elsewhere in the contacting electrolyte solution) so that they span the E° of the poly-[Co(II/I)TPP] couple (Fig. 4B). There is a consequent redistribution of the concentrations of the sites in the two oxidation states to achieve the steady state linear gradients shown in the inset. Figure 4C represents surface profilometry of a different film sample in order to determine the film thickness from that the actual porphyrin site concentration (0.85M). The flow of self exchange-supported current is experimentally parameterized by applying Fick s first law to the concentration-distance diagram in Fig. 4B ...

See other pages where Redistributive coupling is mentioned: [Pg.465]    [Pg.143]    [Pg.144]    [Pg.144]    [Pg.154]    [Pg.155]    [Pg.156]    [Pg.159]    [Pg.159]    [Pg.170]    [Pg.387]    [Pg.392]    [Pg.465]    [Pg.143]    [Pg.144]    [Pg.144]    [Pg.154]    [Pg.155]    [Pg.156]    [Pg.159]    [Pg.159]    [Pg.170]    [Pg.387]    [Pg.392]    [Pg.1058]    [Pg.1073]    [Pg.1075]    [Pg.1152]    [Pg.2462]    [Pg.2971]    [Pg.370]    [Pg.329]    [Pg.241]    [Pg.121]    [Pg.90]    [Pg.160]    [Pg.378]    [Pg.102]    [Pg.29]    [Pg.80]    [Pg.33]    [Pg.61]    [Pg.155]    [Pg.477]    [Pg.470]    [Pg.198]   


SEARCH



Polymer coupling, redistribution

Redistribution

© 2024 chempedia.info