Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactive species formation

Muldrew KL, James LP, Coop L, McCullough SS, Hendrickson HP, Hinson JA, Mayeux PR (2002) Determination of acetaminophen-protein adducts in mouse liver and serum and human serum after hepatotoxic doses of acetaminophen using high-performance liquid chromatography with electrochemical detection. Drug Metab Dispos 30 446-451 Myhre O, Andersen JM, Aames H, Fonnum F (2003) Evaluation of the probes 2, 7 -dichloro-fluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochem Pharmacol 65 1575-1582... [Pg.402]

Myhre, O. Andersen, J. M. Aarnes, H. Fonnum, F. Evaluation of the probes 2, 7 -dichlorofluorescein diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochem. Pharmacol. 2003, 65, 1575-1582. [Pg.272]

In discussing mechanism (5.F) in the last chapter we noted that the entrapment of two reactive species in the same solvent cage may be considered a transition state in the reaction of these species. Reactions such as the thermal homolysis of peroxides and azo compounds result in the formation of two radicals already trapped together in a cage that promotes direct recombination, as with the 2-cyanopropyl radicals from 2,2 -azobisisobutyronitrile (AIBN),... [Pg.352]

Figure 4b represents the case where a reactant dissolved in the dispersed phase reacts with the continuous phase to produce a co-reactant. The co-reactant and any remaining unreacted original reactant left in the dispersed phase then proceed to react with each other at the dispersed phase side of the interface and produce a capsule shell. Capsule shell formation occurs entirely because of reaction of reactants present in the droplets of dispersed phase. No reactant is added to the aqueous phase. As in the case of the process described by Figure 4a, a reactive species must be dissolved in the core material in order to produce a capsule shell. [Pg.320]

The reactive species that iaitiate free-radical oxidatioa are preseat ia trace amouats. Exteasive studies (11) of the autoxidatioa mechanism have clearly estabUshed that the most reactive materials are thiols and disulfides, heterocycHc nitrogen compounds, diolefins, furans, and certain aromatic-olefin compounds. Because free-radical formation is accelerated by metal ions of copper, cobalt, and even iron (12), the presence of metals further compHcates the control of oxidation. It is difficult to avoid some metals, particularly iron, ia fuel systems. [Pg.414]

The efficiency of inactivation by covalent bond formation vs release of the reactive species into solution has been described by its partition ratio. The most efficient inactivators have catalytic partition ratios of 0, in which case each inhibitor molecule leads to inactivation of the enzyme. To this date, many of these inhibitors have been designed, and alternative names like suicide substrate, Trojan Horse inactivator, enzyme induced inactivator, inhibitor, and latent inactivator have been used for this class of inhibitors. A number of comprehensive reviews are available (26—32). [Pg.322]

Usually, a rapid binding step of the inhibitor I to the enzyme E leads to the formation of the initial noncovalent enzyme-inhibitor complex E-I. This is usually followed by a rate determining catalytic step, leading to the formation of a highly reactive species [E—I ]. This species can either undergo reaction with an active site amino acid residue of the enzyme to form the covalent enzyme-inhibitor adduct E—I", or be released into the medium to form product P and free active enzyme E. [Pg.322]

Kelly applied this chemistry to the synthesis of cyclosexipyridine 66. This is an example of an intramolecular variation to this method. Masked enal 65 was prepared and treated with the standard reagents. The acidic medium liberated the aldehyde from its acetal protection. This in situ formation of the reactive species, similar to the above example, then undergoes cyclization to the expected pyridine derivative 66. [Pg.312]

Recently, Nesmeyanov and co-workers have published definitive evidence that dwaZ reactivity (the formation of derivatives of two different structural formulas) extends beyond tautomerism (isomers in equilibrium or reversible isomeric transformation). A single molecular species can form two series of derivatives, in one of which a transfer of the reaction center occurs in the reaction. [Pg.173]

The overall process is the addition of a CH-acidic compound to the carbon-carbon double bond of an o ,/3-unsaturated carbonyl compound. The Michael reaction is of particular importance in organic synthesis for the construction of the carbon skeleton. The above CH-acidic compounds usually do not add to ordinary carbon-carbon double bonds. Another and even more versatile method for carbon-carbon bond formation that employs enolates as reactive species is the aldol reaction. [Pg.202]

The initial step is the protonation of the aldehyde—e.g. formaldehyde—at the carbonyl oxygen. The hydroxycarbenium ion 6 is thus formed as reactive species, which reacts as electrophile with the carbon-carbon double bond of the olefinic substrate by formation of a carbenium ion species 7. A subsequent loss of a proton from 7 leads to formation of an allylic alcohol 4, while reaction with water, followed by loss of a proton, leads to formation of a 1,3-diol 3 " ... [Pg.233]

The actual formylation process is preceded by the formation of dichlorocarbene 3 as the reactive species. In strongly alkaline solution, the chloroform is deproto-nated the resulting trichloromethide anion decomposes into dichlorocarbene and a chloride anion ... [Pg.238]

The mechanism of the C02 transfer reaction with acetyl CoA to give mal-onyl CoA is thought to involve C02 as the reactive species. One proposal is that loss of C02 is favored by hydrogen-bond formation between the A -carboxy-biotin carbonyl group and a nearby acidic site in the enzyme. Simultaneous deprotonation of acetyl CoA by a basic site in the enzyme gives a thioester eno-late ion that can react with C02 as it is formed (Figure 29.6). [Pg.1141]

Extension of these studies to formic acid media (containing 4 vol. % ethylene glycol and 1.3 vol. % water) showed that for protodeboronation of 4-methoxy-benzeneboronic acid at 25 °C) rates were invariant of a tenfold variation in acidity produced by adding sodium formate (0.05-0.20 M) to the medium (Table 194), and in this range the concentration of molecular formic acid is essentially constant. This was, therefore, assumed to be the reactive species. At higher acidities the rate increased, which was attributed to the increase in concentration of hydronium ions and protonated formic acid ions which bring about reaction more readily625. [Pg.291]

Resole syntheses entail substitution of formaldehyde (or formaldehyde derivatives) on phenolic ortho and para positions followed by methylol condensation reactions which form dimers and oligomers. Under basic conditions, pheno-late rings are the reactive species for electrophilic aromatic substitution reactions. A simplified mechanism is generally used to depict the formaldehyde substitution on the phenol rings (Fig. 7.21). It should be noted that this mechanism does not account for pH effects, the type of catalyst, or the formation of hemiformals. Mixtures of mono-, di-, and trihydroxymethyl-substituted phenols are produced. [Pg.398]

The rate of oxidation of mercury (I) by Ce(IV) is slow in any medium but 3.6 times faster ini M perchloric acid than in 1 M sulphuric acid, achieving a maximum in the former medium at 4 Af, and then decreasing . Sulphate ion retards the reaction the rate increase observed in HCIO4 solutions is ascribed to the formation of less complexed, more reactive species of Ce(IV). The kinetics of the reaction between Hg(I) perchlorate and Ce(IV) sulphate have been examined in 2.0 M perchloric acid at 50.0 °C, under which conditions the rate law... [Pg.250]


See other pages where Reactive species formation is mentioned: [Pg.270]    [Pg.289]    [Pg.270]    [Pg.289]    [Pg.34]    [Pg.425]    [Pg.405]    [Pg.258]    [Pg.518]    [Pg.86]    [Pg.324]    [Pg.282]    [Pg.285]    [Pg.1060]    [Pg.549]    [Pg.78]    [Pg.665]    [Pg.736]    [Pg.2]    [Pg.231]    [Pg.38]    [Pg.171]    [Pg.319]    [Pg.459]    [Pg.216]    [Pg.131]    [Pg.66]    [Pg.56]    [Pg.142]    [Pg.863]    [Pg.875]    [Pg.130]   
See also in sourсe #XX -- [ Pg.166 ]




SEARCH



Formate species

Metabolism reactive species formation

Oxidative metabolism reactive species formation

Reactive formation

Reactive oxygen species formation

Reactive species

Reactive species reactivity

© 2024 chempedia.info