Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactions of composition

As a result of interaction between components of mixed solvents, profound rearrangement of bonds takes place. The process is determined by such high equilibrium constant that it is possible to consider the process as practically irreversible  [Pg.508]

Carbonic acid anhydrides-water (e.g., (CH3C0)20 + HjO — 2CH3COOH), systems isothiocyanates-amines (e.g., C3H5NCS + C2H5NH2 — C2H5NHCNSC3H5) are examples of such binary solvents. [Pg.508]

It is pertinent that if solvents are mixed at stoichiometric ratio (m/n), they form individual liquid. [Pg.508]


The reactions of composite 1 with secondary polymer of amino-terminated poly(methyl acrylate), poly(methyl methacrylate) or polystyrene were carried out in acetone or tetrahydrofuran under refluxing for 24 h. The amount of the binding polymer decreased with increasing of the molecular weight, as shown in Table 17.1. [Pg.230]

They do not interfere with the setting of other materials that may be used to cover them, especially the free-radical polymerization setting reaction of composite resins or resin-modified glass-ionomers. [Pg.184]

MECHANO-CHEMICAL REACTIONS OF COMPOSITE MATERIALS WITH POLYMER MATRIX... [Pg.260]

One more application area is composite materials where one wants to investigate the 3D structure and/or reaction to external influences. Fig.3a shows a shadow image of a block of composite material. It consists of an epoxy matrix with glass fibers. The reconstructed cross-sections, shown in Fig.3b, clearly show the fiber displacement inside the matrix. The sample can be loaded in situ to investigate the reaction of matrix and fibers to external strain. Also absorption and transmission by liquids can be visualized directly in three-dimensions. This method has been applied to the study of oil absorption in plastic granules and water collection inside artificial plant grounds. [Pg.581]

Why is potassium aluminium sulphate not soluble in benzene A compound M has the composition C = 50.0% H=12.5%o A1 = 37.5%. 0.360 g of M reacts with an excess of water to evolve 0.336 1 of gas N and leave a white gelatinous precipitate R. R dissolves in aqueous sodium hydroxide and in hydrochloric acid. 20 cm of N require 40 cm of oxygen for complete combustion, carbon dioxide and water being the only products. Identify compounds N and R, suggest a structural formula for M, and write an equation for the reaction of M with water. (All gas volumes were measured at s.t.p.)... [Pg.159]

What we seek next is a quantitative relationship between the extent of the polymerization reaction, the composition of the monomer mixture, and the point of gelation. We shall base our discussion on the system described by reaction (5.U) other cases are derived by similar methods. To further specify the system we assume that A groups limit the reaction and that B groups are present in excess. Two parameters are necessary to characterize the reaction mixture ... [Pg.315]

The product of this reaction can be removed as an azeotrope (84.1% amide, 15.9% acetic acid) which boils at 170.8—170.9°C. Acid present in the azeotrope can be removed by the addition of soHd caustic soda [1310-73-2] followed by distillation (2). The reaction can also take place in a solution having a DMAC-acetic acid ratio higher than the azeotropic composition, so that an azeotrope does not form. For this purpose, dimethylamine is added in excess of the stoichiometric proportion (3). If a substantial excess of dimethylamine reacts with acetic acid under conditions of elevated temperature and pressure, a reduced amount of azeotrope is formed. Optimum temperatures are between 250—325°C, and pressures in excess of 6200 kPa (900 psi) are requited (4). DMAC can also be made by the reaction of acetic anhydride [108-24-7] and dimethylamine ... [Pg.84]

The exact order of the production steps may vary widely in addition, some parts of the process may also vary. Metal formate removal may occur immediately after the reaction (62) following formaldehyde and water removal, or by separation from the mother Hquor of the first-stage crystallization (63). The metal formate may be recovered to hydroxide and/or formic acid by ion exchange or used as is for deicing or other commercial appHcations. Similarly, crystallization may include sophisticated techniques such as multistage fractional crystallization, which allows a wider choice of composition of the final product(s) (64,65). [Pg.465]

Measurement of Unsaturation. The presence of double bonds in a fatty acid side chain can be detected chemically or through use of instmmentation. Iodine value (IV) (74) is a measure of extent of the reaction of iodine with double bonds the higher the IV, the more unsaturated the oil. IV may also be calculated from fatty acid composition. The cis—trans configuration of double bonds may be deterrnined by infrared (59) or nmr spectroscopy. Naturally occurring oils have methylene-intermpted double bonds that do not absorb in the uv however, conjugated dienes maybe deterrnined in an appropriate solvent at 233 nm. [Pg.134]

Calcination. Calcination involves a low (<1000° C) temperature soHd-state chemical reaction of the raw materials to form the desired final composition and stmcture such as perovskite for BaTiO and PZT. It can be carried out by placing the mixed powders in cmcibles in a batch or continuous kiln. A rotary kiln also can be used for this purpose to process continuously. A sufficiendy uniform temperature has to be provided for the mixed oxides, because the thermal conductivity of powdered materials is always low. [Pg.205]

Environmental Aging. AH ceUular polymers are subject to a deterioration of properties under the combined effects of light or heat and oxygen. The response of ceUular materials to the action of light and oxygen is governed almost entirely by the composition and state of the polymer phase (22). Expansion of a polymer into a ceUular state increases the surface area reactions of the foam with vapors and Hquids are correspondingly faster than those of soHd polymer. [Pg.415]

Prussian Blue. Reaction of [Fe(CN)3] with an excess of aqueous h on(Ill) produces the finely divided, intensely blue precipitate Pmssian Blue [1403843-8] (tetrairon(Ill) tris(hexakiscyanoferrate)), Fe4[Fe(CN)3]. Pmssian Blue is identical to Turnbull s Blue, the name which originally was given to the material produced by reaction of [Fe(CN)3] with excess aqueous h on(Il). The soHd contains or has absorbed on its surface a large and variable number of water molecules, potassium ions (if present in the reaction), and h on(Ill) oxide. The h on(Il) centers are low spin and diamagnetic h on(Ill) centers are high spin. Variations of composition and properties result from variations in reaction conditions. Rapid precipitation in the presence of potassium ion affords a colloidal suspension of Pmssian Blue [25869-98-1] which has the approximate composition KFe[Fe(CN)3]. Pmssian Blue compounds are used as pigments in inks and paints and its formation on sensitized paper is utilized in the production of blueprints. [Pg.435]

Materials and Reactions. Candle systems vary in mechanical design and shape but contain the same genetic components (Fig. 1). The candle mass contains a cone of material high in iron which initiates reaction of the soHd chlorate composite. Reaction of the cone material is started by a flash powder train fired by a spring-actuated hammer against a primer. An electrically heated wire has also been used. The candle is wrapped in insulation and held in an outer housing that is equipped with a gas exit port and rehef valve. Other elements of the assembly include gas-conditioning filters and chemicals and supports for vibration and shock resistance (4). [Pg.484]


See other pages where Reactions of composition is mentioned: [Pg.508]    [Pg.508]    [Pg.1616]    [Pg.407]    [Pg.508]    [Pg.508]    [Pg.1616]    [Pg.407]    [Pg.284]    [Pg.204]    [Pg.110]    [Pg.159]    [Pg.351]    [Pg.204]    [Pg.265]    [Pg.204]    [Pg.36]    [Pg.49]    [Pg.234]    [Pg.254]    [Pg.125]    [Pg.279]    [Pg.401]    [Pg.25]    [Pg.301]    [Pg.301]    [Pg.379]    [Pg.386]    [Pg.65]    [Pg.501]    [Pg.94]    [Pg.236]    [Pg.426]    [Pg.532]    [Pg.332]    [Pg.197]    [Pg.504]    [Pg.27]   


SEARCH



Chemical transport reactions as a new variant of the phase composition control

Composite reaction

Composition of reaction mixture

Composition reaction

How to Measure Surface Reactions of Cathode Materials and Relevant Composite Electrodes

The Equilibrium Constant in Terms of Composition for a Gas(g)-Solid(s) Reaction

© 2024 chempedia.info