Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Controlled-rate

The most accurate flow rate control can be achieved by using the loss-in-weight method. The total amount of material required for a downstream process is first added to a tank or hopper scale. As the material is discharged, the loss-in-weight is monitored and used to modulate the discharge valve or gate to achieve the desired flow rate. [Pg.334]

The two procedures primarily used for continuous nitration are the semicontinuous method developed by Bofors-Nobel Chematur of Sweden and the continuous method of Hercules Powder Co. in the United States. The latter process, which uses a multiple cascade system for nitration and a continuous wringing operation, increases safety, reduces the personnel involved, provides a substantial reduction in pollutants, and increases the uniformity of the product. The cellulose is automatically and continuously fed into the first of a series of pots at a controlled rate. It falls into the slurry of acid and nitrocellulose and is submerged immediately by a turbine-type agitator. The acid is deflvered to the pots from tanks at a rate controlled by appropriate instmmentation based on the desired acid to cellulose ratio. The slurry flows successively by gravity from the first to the last of the nitration vessels through under- and overflow weirs to ensure adequate retention time during nitration. The overflow from the last pot is fully nitrated cellulose. [Pg.14]

The equations of combiaed diffusion and reaction, and their solutions, are analogous to those for gas absorption (qv) (47). It has been shown how the concentration profiles and rate-controlling steps change as the rate constant iacreases (48). When the reaction is very slow and the B-rich phase is essentially saturated with C, the mass-transfer rate is governed by the kinetics within the bulk of the B-rich phase. This is defined as regime 1. [Pg.64]

Triphenylphosphine oxide [791-28-6], C gH OP, and triphenyl phosphate [115-86-6], C gH O P, as model phosphoms flame retardants were shown by mass spectroscopy to break down in a flame to give small molecular species such as PO, HPO2, and P2 (33—35). The rate-controlling hydrogen atom concentration in the flame was shown spectroscopically to be reduced when these phosphoms species were present, indicating the existence of a vapor-phase mechanism. [Pg.475]

Computer controls are likewise used for stove operation, to control deUvery of the hot blast. High hot blast temperatures are generally desirable, as these reduce the coke rate. Control of the flame temperature in the raceway is effected by controlled additions to the hot blast, primarily of moisture. Injectants into the tuyeres such as coal, oil, and natural gas are often used to replace some of the coke. The effect of these injectants on flame temperature must be accounted for, and compensation is performed by lowering moisture or adding oxygen. [Pg.420]

Chemistry. Free-radical nitrations consist of rather compHcated nitration and oxidation reactions (31). When nitric acid is used in vapor-phase nitrations, the reaction of equation 5 is the main initiating step where NO2 is a free radical, either -N02 or -ON02. Temperatures of >ca 350° are required to obtain a significant amount of initiation, and equation 5 is the rate-controlling step for the overall reaction. Reactions 6 and 7 are chain-propagating steps. [Pg.35]

These reactions occur as low as 200°C. The exact temperature depends on the specific hydrocarbon that is nitrated, and reaction 8 is presumably the rate-controlling step. Reaction 9 is of minor importance in nitration with nitric acid, as indicated by kinetic information (32). [Pg.35]

Absorption of Nitrogen Oxides. There have been numerous studies and reports on the reaction mechanisms and rate-controlling steps for the absorption of nitrogen oxides into water (43—46). The overall reaction to form nitric acid may be represented by equation 14, where Ai/298 K kJ/mol ofNO consumed. [Pg.43]

Reaction 1 is the rate-controlling step. The decomposition rate of pure ozone decreases markedly as oxygen builds up due to the effect of reaction 2, which reforms ozone from oxygen atoms. Temperature-dependent equations for the three rate constants obtained by measuriag the decomposition of concentrated and dilute ozone have been given (17—19). [Pg.491]

Alza Corp. has also developed an iatrauteriae device, Progestasert, designed to release progesterone [57-83-0] by diffusion through a rate-controlling membrane for up to one year. The dmg reservoir is built into a T-shaped device that is inserted intravaginaHy (15). [Pg.233]

The above mechanism, together with the assumptions that initiator decomposition is rate controlling and that a steady state in chain radicals exists, results in the classical expressions (eqs. 8 and 9) for polymerization rate, and number-average degree of polymerization, in a homogeneous,... [Pg.436]

Equation 20 is the rate-controlling step. The reaction rate of the hydrophobes decreases in the order primary alcohols > phenols > carboxylic acids (84). With alkylphenols and carboxylates, buildup of polyadducts begins after the starting material has been completely converted to the monoadduct, reflecting the increased acid strengths of these hydrophobes over the alcohols. Polymerization continues until all ethylene oxide has reacted. Beyond formation of the monoadduct, reactivity is essentially independent of chain length. The effectiveness of ethoxylation catalysts increases with base strength. In practice, ratios of 0.005—0.05 1 mol of NaOH, KOH, or NaOCH to alcohol are frequendy used. [Pg.246]

Under natural conditions the rates of dissolution of most minerals are too slow to depend on mass transfer of the reactants or products in the aqueous phase. This restricts the case to one either of weathering reactions where the rate-controlling mechanism is the mass transfer of reactants and products in the soHd phase, or of reactions controlled by a surface process and the related detachment process of reactants. [Pg.214]

The mechanistic steps are as follows paraffins dehydrogenate to olefins the olefins oligomerize and cyclize and the cycHcs aromatize. Because the first step is rate controlling, very Httie olefin is actually present. The BTX product is relatively free of nonaromatics and therefore is very desirable as a chemical feed. As in reforming, some C —C2 fuel gas is produced along with a valuable hydrogen stream. Prom a C —feed the BTX product is roughly 35 45 20, respectively. [Pg.310]

In a study of oxidation resistance over the range 1200—1500°C an activation energy of 276 kj/mol (66 kcal/mol) was determined (60). The rate law is of the form 6 = kT + C the rate-controlling step is probably the diffusion of oxygen inward to the SiC—Si02 interface while CO diffuses outwards. [Pg.465]

Film thickness is an important factor iu solvent loss and film formation. In the first stage of solvent evaporation, the rate of solvent loss depends on the first power of film thickness. However, iu the second stage when the solvent loss is diffusion rate controlled, it depends on the square of the film thickness. Although thin films lose solvent more rapidly than thick films, if the T of the dryiug film iucreases to ambient temperature duriug the evaporation of the solvent, then, even iu thin films, solvent loss is extremely slow. Models have been developed that predict the rate of solvent loss from films as functions of the evaporation rate, thickness, temperature, and concentration of solvent iu the film (9). [Pg.334]

Sjitgren, Rate Control in Drug Therapy ChurchiU Livingstone, Edinburgh, 1985, pp. 38—47. [Pg.151]

H. A. ]. Stmyker-Boudier, ed., Rate-Controlled Drug Administration and Action, CRC Press, Inc., Boca Raton, Fla., 1986. [Pg.151]


See other pages where Controlled-rate is mentioned: [Pg.48]    [Pg.284]    [Pg.577]    [Pg.662]    [Pg.2728]    [Pg.206]    [Pg.202]    [Pg.73]    [Pg.405]    [Pg.88]    [Pg.89]    [Pg.212]    [Pg.43]    [Pg.236]    [Pg.485]    [Pg.232]    [Pg.54]    [Pg.563]    [Pg.147]    [Pg.339]    [Pg.71]    [Pg.46]    [Pg.455]    [Pg.412]    [Pg.125]    [Pg.213]    [Pg.335]    [Pg.352]    [Pg.521]    [Pg.142]    [Pg.144]    [Pg.144]    [Pg.146]   
See also in sourсe #XX -- [ Pg.318 ]




SEARCH



Rate control

Rate controlling

© 2024 chempedia.info