Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radioactive series, actinium thorium

Various radium isotopes are derived through a series of radioactive decay processes. For example, Ra-223 is derived from the decay of actinium. Ra-228 and Ra-224 are the result of the series of thorium decays, and Ra-226 is a result of the decay of the uranium series. [Pg.81]

The series of Radioactive disintegrations the uranium-radium series, the uranium-actinium series, the thorium series, and the neptunium series. The age of the earth. The fundamental particles electron, proton, positron, neutron, positive, negative, and neutral mesons, neutrino. The photon (light quantum) the energy of a photon, hv. Planck s constant. The wave-particle duality of light and of matter. The wavelengths of electrons. [Pg.685]

The actinides are a row of radioactive elements from thorium to lawrencium. They were not always separated into their own row in the periodic table. Originally, the actinides were located within the d-block following actinium. In 1944, Glenn Seaborg proposed a reorganization of the periodic chart to reflect what he knew about the chemistry of the actinide elements. He placed the actinide series elements in their own row directly below the lanthanide series. Seaborg had played a major role in the discovery of plutonium in 1941. His reorganization of the periodic table made it possible for him and his coworkers to predict the properties of possible new elements and facilitated the synthesis of nine additional transuranium elements. [Pg.921]

The exponential laws of radioactive-series decay and growth of radionuclides were first formulated by Rutherford and Soddy in 1902, to explain their results (Rutherford and Soddy 1902,1903) on the thorium series of radionuclides. In 1910, Bateman (Bateman 1910) derived generalized mathematical expressions that were used to describe the decay and growth of the naturally occurring actinium, uranium, and thorium series until the discovery of nuclear fission and other new radioactive decay series were found in the 1940s. For the description of half-lives and decay constants, activities and number of radionuclides involved in the decay of two radionuclides, Friedlander et al. (1981) have given a representative overview (see also O Chap. 5 in Vol. 1). [Pg.1937]

Two methods to secure very small samples of francium for examination use the decay processes of other radioactive elements. One is to bombard thorium with protons. The second is to start with radium in an accelerator, where, through a series of decay processes, the radium is converted to actinium, which in turn rapidly decays into thorium, and finally, thorium decays naturally into francium. Following is a schematic of the decay process used for the production of small amounts of Fr-223 which, in turn, after several more decay processes ends up as stable lead (Pb) ... [Pg.64]

ISOTOPES There are 41 isotopes of polonium. They range from Po-188 to Po-219. All of them are radioactive with half-lives ranging from a few milliseconds to 102 years, the latter for its most stable isotope Po-209. Polonium is involved with several radioactive decay series, including the actinium series, Po-211 and Po-215 the thorium series, Po-212 and Po-216 and the uranium decay series, Po-210, Po-214, and Po-218. [Pg.241]

One of the most important observations of atoms is the set of relationships between elements that belong to one of the series of radioactive decays. The parent elements of uranium, thorium and actinium decay through many intermediates to the stable element lead. The Nobel Prize in Chemistry for 1921 was awarded in 1922 to Frederick Soddy for his complete characterization of these processes. The story is beautifully told in his Nobel Lecture entitled The origins of the conception of isotopes (25). [Pg.96]

I he atomic wcighi varies because of natural variations in the isotopic composition of the element, caused by the various isotopes having different origins - I h is the end product of the thorium decay scries, while Ph and " Pb arise Irom uranium as end products of the actinium and radium series respectively. Lead-204 has no existing natural radioactive precursors. Electronic configuration l.v 2s lfc22/j"3v 3//,3i/l"4v- 4/, 4l/" 4/ IJ5v- 5/ "5t/l"bv />-. Ionic radius Pb I.IX A. Pb 1 0.7(1 A. Metallic radius 1.7502 A. Covalent radius (ip i 1.44 A. First ionization potential 7.415 cV second. 14.17 eV. Oxidation... [Pg.922]

Both a 4n and a 4n + 3 series of heavy radioactive elements occur naturally. The 4n series is sometimes called the thorium series, since its long-lived parent is Th232 (half-life, 14,000,000,000 years), whereas the 4n + 3 series is the actinium series. The long-lived parent of the latter is U235 (half-life 707,000,000 years), but unlike the 4n + 2 series, one of its members is actinium (Ac227). Final members of both of these series are lead isotopes, Pb208 and Pb207. [Pg.461]

Daughters of alpha emitters The recoil method can also be useful for the separation of daughter products produced by a decay of a parent. This technique has been applied to studies of short-lived daughters In the radioactive decay series of uranium, thorium, and actinium (175) ... [Pg.19]

Many of the radioactive isotopes that occur in nature are related to each other. For example, when uranium-235 breaks apart, it forms a new isotope, thorium-231. But thorium-231 is radioactive also. It breaks apart to form protactinium-231. And protactinium-231 is also radioactive. It breaks apart to form actinium-227. This series goes on for 14 more steps until a stable isotope is finally formed. [Pg.474]

In the first steps of its radioactive decay series, thorium-232 decays to radium-228, which then decays to actinium-228. What are the balanced nuclear equations describing these first two decay steps ... [Pg.839]

CAS 7439-92-1. Pb. Metallic element of atomic number 82, group IVA of the periodic table, aw 207.2, valences = 2,4, four stable isotopes. The isotopes are the end products of the disintegration of three series of natural radioactive elements uranium (206), thorium (208), and actinium (207). [Pg.743]

FlC- 1-2, The three naturally occurring radioactive decay series and the man-made neptunium series. Although (which is the parent to the actinium series) and (which is the parent to the thorium series) have been discovered in nature, die decay series shown here begin with the most abundant Icmg-Uved nuclides. [Pg.4]


See other pages where Radioactive series, actinium thorium is mentioned: [Pg.102]    [Pg.57]    [Pg.305]    [Pg.11]    [Pg.891]    [Pg.863]    [Pg.689]    [Pg.805]    [Pg.1202]    [Pg.85]    [Pg.147]    [Pg.99]    [Pg.378]    [Pg.84]    [Pg.1331]    [Pg.1407]    [Pg.633]    [Pg.87]    [Pg.432]    [Pg.31]    [Pg.323]    [Pg.330]    [Pg.22]    [Pg.67]    [Pg.178]    [Pg.141]    [Pg.464]    [Pg.113]    [Pg.655]    [Pg.670]    [Pg.662]    [Pg.6]    [Pg.714]    [Pg.448]   


SEARCH



Actinium

Actinium series

Radioactive series

Radioactive series, actinium

Thorium radioactivity

Thorium series

© 2024 chempedia.info