Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radioactive decay gamma rays

Neutron Activation Analysis Few samples of interest are naturally radioactive. For many elements, however, radioactivity may be induced by irradiating the sample with neutrons in a process called neutron activation analysis (NAA). The radioactive element formed by neutron activation decays to a stable isotope by emitting gamma rays and, if necessary, other nuclear particles. The rate of gamma-ray emission is proportional to the analyte s initial concentration in the sample. For example, when a sample containing nonradioactive 13AI is placed in a nuclear reactor and irradiated with neutrons, the following nuclear reaction results. [Pg.645]

The radioactive isotope of 13AI has a characteristic decay process that includes the release of a beta particle and a gamma ray. [Pg.645]

Gamma rays High-energy electromagnetic radiation. It is the most penetrating form of radiation that results from the decay of radioactive elements. [Pg.119]

The numerical combination of protons and neutrons in most nuclides is such that the nucleus is quantum mechanically stable and the atom is said to be stable, i.e., not radioactive however, if there are too few or too many neutrons, the nucleus is unstable and the atom is said to be radioactive. Unstable nuclides undergo radioactive transformation, a process in which a neutron or proton converts into the other and a beta particle is emitted, or else an alpha particle is emitted. Each type of decay is typically accompanied by the emission of gamma rays. These unstable atoms are called radionuclides their emissions are called ionizing radiation and the whole property is called radioactivity. Transformation or decay results in the formation of new nuclides some of which may themselves be radionuclides, while others are stable nuclides. This series of transformations is called the decay chain of the radionuclide. The first radionuclide in the chain is called the parent the subsequent products of the transformation are called progeny, daughters, or decay products. [Pg.301]

Radioactive isotopes that decay by the emission of alpha or beta radiation undergo a change in the nature of their nuclei and are converted into isotopes of other elements. The emission of gamma rays, on the other hand, does not change the nature of the nuclei of the radioisotopes from which the rays are emitted. Gamma rays are a form of dissipation of nuclear energy. [Pg.72]

Some radioisotopes decay emitting only gamma rays, but many do so by the concurrent emission of beta and gamma radiation. The rate at which radiation is emitted from the nuclei of different radioisotopes varies considerably. Each radioisotope has a unique form of decay that is characterized by its half-life (tV2), the time it takes for the radioactivity of the radioisotope to decrease by one-half of its original value (see Textbox 14). [Pg.72]

Radioactive decay is a nuclear process from an intrinsically unstable nucleus that emits alpha particles, beta particles and gamma rays. The loss of mass from the nucleus changes the element to one of a lower mass. Carbon dating uses the decay of the 14C nucleus, a heavy and unstable isotope of carbon, to become the stable 14N isotope. The overall process is written ... [Pg.166]

Gamma emission is the release of high-energy, short-wavelength photons, which are similar to x-rays. The representation of this radiation is y. Gamma emission commonly accompanies most other types of radioactive decay, but we normally do not show it in the balanced nuclear equation since it has neither appreciable mass nor charge. [Pg.294]

In the meantime, E. Rutherford (NLC 1908 ) studied the radioactivity discovered by Becquerel and the Curies. He determined that the emanations of radioactive materials include alpha particles (or rays) which are positively charged helium atoms, beta particles (or rays) which are negatively charged electrons, and gamma rays which are similar to x-rays. He also studied the radioactive decay process and deduced the first order rate law for the disappearance of a radioactive atom, characterized by the half-life, the time in which 50% of a given radioactive species disappears, and which is independent of the concentration of that species. [Pg.5]

Americium does not exist in nature. All of its isotopes are man-made and radioactive. Americium-241 is produced by bombarding plutonium-239 with high-energy neutrons, resulting in the isotope plutonium-240 that again is bombarded with neutrons and results in the formation of plutonium-241, which in turn finally decays into americium-241 by the process of beta decay. Both americium-241 and americium-243 are produced within nuclear reactors. The reaction is as follows Pu + (neutron and X gamma rays) —> " Pu + (neutron and X gamma rays) —> Pu—> Am + beta minus ([ -) followed by " Am—> jNp-237 + Hej (helium nuclei). [Pg.322]

Fig. 4.4. All-sky map in the light of the 1.809 MeV gamma-ray hne from radioactive aluminium-26. The galactic distribution of aluminium-26, based on data from the COMPTEL (Compton Telescope) experiment aboard the GRO (Gamma-Ray Observatory), suggests that this isotope is dispersed across the Galaxy by the most massive stars, Wolf-Rayet stars and supernovas. Al is formed by the reaction Mg -b p — A1 -b y. This radioactive isotope has a lifetime of about million years and is ejected into space before it begins to decay. Fig. 4.4. All-sky map in the light of the 1.809 MeV gamma-ray hne from radioactive aluminium-26. The galactic distribution of aluminium-26, based on data from the COMPTEL (Compton Telescope) experiment aboard the GRO (Gamma-Ray Observatory), suggests that this isotope is dispersed across the Galaxy by the most massive stars, Wolf-Rayet stars and supernovas. Al is formed by the reaction Mg -b p — A1 -b y. This radioactive isotope has a lifetime of about million years and is ejected into space before it begins to decay.
RADIOACTIVE DECAY. Many atomic nuclei have unstable neutron-to-proton ratios and undergo spontaneous first-order decay through the emission of a, I3, or (3 particles or gamma rays. [Pg.329]

Man-made radioactive atoms are produced either as a by-product of fission of uranium atoms in a nuclear reactor or by bombarding stable atoms with particles, such as neutrons, directed at the stable atoms with high velocity. These artificially produced radioactive elements usually decay by emission of particles, such as positive or negative beta particles and one or more high energy photons (gamma rays). Unstable (radioactive) atoms of any element can be produced. [Pg.160]


See other pages where Radioactive decay gamma rays is mentioned: [Pg.97]    [Pg.372]    [Pg.97]    [Pg.372]    [Pg.3]    [Pg.449]    [Pg.334]    [Pg.145]    [Pg.320]    [Pg.51]    [Pg.516]    [Pg.356]    [Pg.19]    [Pg.28]    [Pg.302]    [Pg.302]    [Pg.306]    [Pg.306]    [Pg.82]    [Pg.71]    [Pg.77]    [Pg.510]    [Pg.257]    [Pg.573]    [Pg.282]    [Pg.109]    [Pg.404]    [Pg.361]    [Pg.6]    [Pg.127]    [Pg.132]    [Pg.390]    [Pg.410]    [Pg.56]    [Pg.27]    [Pg.73]    [Pg.160]    [Pg.167]   
See also in sourсe #XX -- [ Pg.3085 ]




SEARCH



Decay radioactive

Gamma decay

Gamma ray

Gamma ray A high-energy photon produced in radioactive decay

RAY DECAY

Radioactive decay gamma

Radioactive ray

Radioactivity gamma

Radioactivity gamma rays

Radioactivity radioactive decay

© 2024 chempedia.info