Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radicals iodine atom transfer

By contrast, for iodide 18 having the triple bond activated by a phenyl group, conversion to the cyclic organozinc species 25 occurred effectively and the latter could be efficiently functionalized, provided that traces of moisture were excluded by pre-treatment of zinc powder with Mel. The substituted benzylidene cyclopentanes 26 and 27 were respectively obtained after iodinolysis and palladium-catalyzed cross-coupling reaction with benzoyl chloride (equation 10). However, it could not be assessed whether the formation of organozinc 25 was attributable to an anionic or a radical cyclization pathway (or both) as, had iodide 26 been produced by a radical iodine atom-transfer, it would have been converted to 25 by reaction with metallic zinc due to the presence of the activating phenyl group21. [Pg.869]

Radical iodine atom transfer [3 + 2]-cycloaddition with alkene (118) using dimethyl 2-(iodomethyl)cyclopropane-l,l-dicarboxylate (117) forms cyclopentane derivative (119), through the formation of an electron-deficient homoallyl radical, followed by the addition to alkene, and cyclization via 5-exo-trig manner as shown in eq. 4.41. [Pg.142]

Cyclizations involving iodine-atom transfers have been developed. Among the most effective examples are reactions involving the cyclization of 6-iodohexene derivatives. The 6-hexenyl radical generated by iodine-atom abstraction rapidly cyclizes to a cyclo-pentylmethyl radical. The chain is propagated by iodine-atom transfer. [Pg.715]

These reactions result in iodine atom transfer and introduce a potential functional group into the product. The trialkylborane method of radical generation can also be used in conjunction with either tri-n-butyl stannane or fnT-(trimethylsilyl)silane, in which case the product is formed by hydrogen atom transfer. [Pg.959]

Reaction conditions have been developed in which the cyclized radical can react in some manner other than hydrogen atom abstraction. One such reaction is an iodine atom transfer. The cyclization of 2-iodo-2-methyl-6-heptyne is a structurally simple example. [Pg.970]

The fact that the cyclization is directed toward an acetylenic group and leads to formation of an alkenyl radical is significant. Formation of a saturated iodide could lead to a more complex product mixture because the cyclized product could undergo iodine atom transfer and proceed to add to a second unsaturated center. Vinyl iodides are much less reactive and the reaction product is unreactive. Owing to the potential... [Pg.970]

Scheme 3.32. Products and mechanism of an iodine atom transfer radical domino reaction. Scheme 3.32. Products and mechanism of an iodine atom transfer radical domino reaction.
Triethylborane in combination with oxygen provides an efficient and useful system for iodine atom abstraction from alkyl iodide, and thus is a good initiator for iodine atom transfer reactions [13,33,34]. Indeed, the ethyl radical, issued from the reaction of triethylborane with molecular oxygen, can abstract an iodine atom from the radical precursor to produce a radical R that enters into the chain process (Scheme 13). The iodine exchange is fast and efficient when R is more stable than the ethyl radical. [Pg.89]

All the examples presented under Sect. 4.1 used an iodine atom transfer to generate the desired radicals. Another approach involving abstraction of hydrogen atom is also reported. For instance, ethers and acetals undergo direct intermolecular addition to aldehydes under treatment with Et3B/air... [Pg.110]

Cyclizable radical-probe experiments have been extensively used in ET versus Spj2 investigations (see Ashby, 1988, and references cited therein). Attention has, however, been recently drawn to causes of possible misinterpretation, particularly in the case of iodides, where an iodine-atom-transfer chain mechanism is able to convert most of the starting linear iodide into the cyclized iodide, even if only a minute amount of linear-chain radical is present in 7-8 2 reactions (Newcomb and Curran, 1988). Rather puzzling results were found in the reaction of (CH3)3Sn ions with secondary bromides, which should not be involved in atom-exchange chain reactions... [Pg.113]

Iodine atom transfer reactions between alkyl radicals and iodocarbonyls are very rapid (107 M-1 s-1 to 109 M-1 s-1).130 This means that, even when these iodides are cyclized by the tin hydride method, iodine atom transfer may supersede hydrogen transfer, and the reductively cyclized product will ultimately be derived from the reduction of a cyclic iodide. Tin hydride cyclizations of halocarbonyls also often require very low concentration to avoid reduction of the initial radical prior to cyclization. For these reasons, reductively cyclized products are best formed by atom transfer cyclization at high concentration, followed by reduction of the product in situ. In a recent full paper, we have described in detail the preparative and mechanistic features of these cyclizations,19 and Jolly and Livinghouse have reported a modification of our reaction conditions that appears to be especially useful for substrates that cyclize very slowly.131 Cyclizations of a-iodocarbonyls can also be promoted by palladium.132... [Pg.803]

Radical cyclization with iodine atom transfer of a highly functionalized propiolic ester 103 using dibenzoyl peroxide as an initiator gave the a-methylene-y-butyrolactone 104 in good yield [95T11257]. The relative stereochemistry at carbon atoms 4 and 5 are established during the reaction. The intermediate 104 has been converted to the anti-tumor agent (-)-methylenolactocin 105. [Pg.24]

In the presence of an alkyl iodide, selective alkyl radical addition to the C-atom of the imine generated in situ occurs, overcoming the competitive phenylation reaction (Equation 14.20) [30]. The Ph- radical, generated by decomposition of the diazonium salt, as described before, generates the alkyl radical by selective iodine atom transfer (Equation 14.21). [Pg.346]

A limitation of the aforementioned methods is that they are unsuitable for the use of primary alkyl iodides. Under Et3B/02 initiation conditions, the desired radical is intended to be generated by iodine atom transfer to ethyl radicals, which is not favorable in the case of primary iodides. Thus ethyl radical addition competes with the desired radical when using triethylborane initiation along with primary iodides. In addition, generating radicals by hydrogen atom transfer from ethers or acetals has limited applicability. Because of the expanded synthetic potential of primary alkyl iodides as... [Pg.69]

Miyabe et al. developed a tandem addition/cycUzation reaction featuring an unprecedented addition of alkoxycarbonyl-stabihzed radicals on oxime ethers [117], and leading to the diastereoselective formation of /1-amino-y-lactone derivatives [118,119]. The reaction proceeds smoothly in the absence of toxic tin hydride and heavy metals via a route involving a triethylborane-mediated iodine atom-transfer process (Scheme 37). Decisive points for the success of this reaction are (1) the differentiation of the two electrophilic radical acceptors (the acrylate and the aldoxime ether moieties) towards the nucleophilic alkyl radical and (2) the high reactivity of triethylborane as a trapping reagent toward a key intermediate aminyl radical 125. The presence of the bulky substituent R proved to be important not only for the... [Pg.25]

The reaction follows the latter pathway when oxidation of radical 234 is not so easy. In those cases, an alternate course involving iodine atom transfer to the substrate is followed. This allows the formation of iodoalditols [196,197], difluoroalditols (241, 75%) [198], vinyl azides [199], or vinyl sulfones (although in that particular case, the mechanism may be more sophisticated due to the possible 6-elimination of the sulfur group) [200]. [Pg.50]

Naito has also described analogous tandem radical addition-cyclization processes under iodine atom-transfer reaction conditions [16,32], Treatment of 186 with z-PrI (30 eq.) and triethylborane (3x3 eq.) in toluene at 100 °C gave, after cleavage from the resin, the desired lactam product 190 in 69% yield (Scheme 46). Similar reactions involving cyclohexyl iodide, cyclopentyl iodide, and butyl iodide were also reported as well as the reaction with ethyl radical from triethylborane [16,32], The relative stereochemistry of the products was not discussed. [Pg.120]

Following the pioneer work of Kharasch [60], methods involving radical transfer of halides have been developed. The atom transfer method has emerged in the 1980s as one of the best method for conducting intra- and intermolecular radical additions to olefins [61]. This approach is particularly appealing from an atom economy point of view since all atoms remains in the final product. The non-reductive nature of these reactions is also particularly important for the preparation of functionalized molecules. Halides transfers and more particularly iodine atom transfers have found nice applications for cyclizations, annula-tions and cascade reactions [62]. These reactions are based on exothermic radical steps, such as the addition of an alkyl radical to an olefin, followed by an... [Pg.95]

Up until the end of the 1980s, radical carbonylation chemistry was rarely considered to be a viable synthetic method for the preparation of carbonyl compounds. In recent years, however, a dramatic change has occurred in this picture [3]. Nowadays, carbon monoxide has gained widespread acceptance in free radical chemistry as a valuable Cl synthon [4]. Indeed, many radical methods can allow for the incorporation of carbon monoxide directly into the carbonyl portion of aldehydes, ketones, esters, amides, etc. Radical carboxylation chemistry which relies on iodine atom transfer carbonylation is an even more recent development. In terms of indirect methods, the recent emergence of a series of sulfonyl oxime ethers has provided a new and powerful radical acylation methodology and clearly demonstrates the ongoing vitality of modem free radical methods for the synthesis of carbonyl compounds. [Pg.93]

When alkyl iodides and ROH were irradiated under CO pressure in the presence of a base such as potassium carbonate, good yields of carboxylic acid esters were obtained (Scheme 4-42) [71]. In the absence of a base, no carbonylation took place. The role of photo-irradiation is to initiate this hybrid radical/ionic reaction by effecting the homolysis of an R-I bond. The thermal initiation process involving allyltin and AIBN has also been found to be useful, as demonstrated by two examples of amide synthesis which are shown in Scheme 4-42 [72], The likely mechanism involves (i) radical initiation via either irradiation or thermal initiation, (ii) radical chain propagation, composed of two reversible type radical reactions (carbonylation and iodine atom transfer) and (iii) ionic quenching to shift... [Pg.118]

Triethylborane in combination with oxygen provides an efficient and useful system for iodine atom abstraction from alkyl iodides and therefore is a good initiator for iodine atom transfer reactions.6 Indeed, the ethyl radical, issuing... [Pg.63]

In the preceding chapters it was noted that trialkylboranes are useful radical initiators as well as an efficient source of alkyl radicals. Organoboranes can also be used as chain transfer reagents. This approach is used when the direct reaction between the radical precursor and the radical trap cannot proceed (Scheme 6.7). Alkyl radicals generated from the organoboranes are not involved in product formation, but they produce the radicals leading to products. For this purpose, an extra step such as an iodine atom transfer or a... [Pg.66]


See other pages where Radicals iodine atom transfer is mentioned: [Pg.240]    [Pg.240]    [Pg.1173]    [Pg.240]    [Pg.240]    [Pg.1173]    [Pg.974]    [Pg.107]    [Pg.869]    [Pg.802]    [Pg.803]    [Pg.177]    [Pg.96]    [Pg.70]    [Pg.396]    [Pg.33]    [Pg.26]    [Pg.120]    [Pg.97]    [Pg.103]   
See also in sourсe #XX -- [ Pg.970 , Pg.972 , Pg.974 ]




SEARCH



Atom-transfer radical

Iodine atom transfer

Iodine atom transfer reactions radical cyclizations

Iodine radical

Radical reactions iodine atom transfer

Radical transfer

© 2024 chempedia.info