Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radical chain branching

Reaction (7) couples S2 and SH, as was noted from their fluorescence profiles. Similarly, reaction (12) links SO to S02. Reactions (13) and (14) connect oxidized and reduced species, SO with S2 and SH. The model relates all sulfur bearing species in the flames. The non-equilibrium concentrations of H and OH radicals generated in the flame front by the fast radical chain branching reactions... [Pg.124]

Free radical chain branching (initiation of new chains)... [Pg.313]

During the polymeriza tion process the normal head-to-tad free-radical reaction of vinyl chloride deviates from the normal path and results in sites of lower chemical stabiUty or defect sites along some of the polymer chains. These defect sites are small in number and are formed by autoxidation, chain termination, or chain-branching reactions. Heat stabilizer technology has grown from efforts to either chemically prevent or repair these defect sites. Partial stmctures (3—6) are typical of the defect sites found in PVC homopolymers (2—5). [Pg.544]

One characteristic of chain reactions is that frequentiy some initiating process is required. In hydrocarbon oxidations radicals must be introduced and to be self-sustained, some source of radicals must be produced in a chain-branching step. Moreover, new radicals must be suppHed at a rate sufficient to replace those lost by chain termination. In hydrocarbon oxidation, this usually involves the hydroperoxide cycle (eqs. 1—5). [Pg.334]

New radicals are introduced by thermolysis of the hydroperoxide by chain-branching decomposition (eq. 4). Radicals are removed from the system by chain-termination reaction(s) (eq. 5). Under steady-state conditions, the production of new radicals is in balance with the rate of radical removal by termination reactions and equation 8 appHes for the scheme of equations 1—5 where r. = rate of new radical introduction (eq. 4). [Pg.334]

Reversibility of Equation 2. Notwithstanding the problems and conflicts, there is widespread agreement that the NTC phenomenon may well be related to the reversibiUty of equation 2 (13,60,63—67) R- + O2 ROO-. In the low temperature regime, the equiUbrium Hes to the right and alkylperoxy radicals are the dominant radical species. They form hydroperoxides, the chain-branching agent, by reaction 3. [Pg.338]

Ethylene oxide is a coproduct, probably formed by the reaction of ethylene and HOO (124—126). Chain branching also occurs through further oxidation of ethylene hydroxyl radicals are the main chain centers of propagation (127). [Pg.341]

Shimizu and Ohtsu [69] have proposed a chemical method to determine head-to-head structures in PVC. Mitani et al. [70] found 2.5-7.0 head-to-head structures per 1,000 monomer units, increasing with the polymerization temperature. It has not been possible to detect internal head-to-head structure by C-NMR spectroscopy with the detection limit of 2 per 1,000 monomer units [71]. Starnes et al. [71] found evidence for the absence of neighboring methylene groups by C-NMR spectroscopy. However, the proposed reaiTangement of head-to-head units at the radical chain ends resulting in chloromethyl branches [Eq. (6)] would partially explain their consumption during polymerization and their absence in the final product. [Pg.324]

R may be a radical formed by the decomposition of an initiator or a growing radical chain. Similarly, grafting by the chain-transfer mechanism occurs when the branched part consists of another monomer. Since cellulose is a poor transfer agent [8], the efficiency of grafting is quite poor. Incorporation of—SH groups into cellulose enhances the probability of chain transfer. This can be achieved as follows ... [Pg.503]

Low-density polyethylene (LDPE) is produced under high pressure in the presence of a free radical initiator. As with many free radical chain addition polymerizations, the polymer is highly branched. It has a lower crystallinity compared to HDPE due to its lower capability of packing. [Pg.326]

The microstrueture of PVC has been the subject of numerous studies (Sections 4.3.1.2 and 6.2.6.3).214 Starnes el n/.l6S determined the long chain branch points by NMR studies on PE formed by Bu,SnlI reduction of PVC. They concluded that the probable mechanism for the formation of these branches involved transfer to polymer that occurred by hydrogen abstraction of a backbone methine by the propagating radical (Scheme 6.32),... [Pg.325]

Chain reactions begin with the initiation of a reactive intermediate that propagates the chain and concludes with termination when radicals combine. Branching chain reactions can be explosively fast. [Pg.674]

The reaction with sulfides occurs efficiently only when the resulting carbon-centered radicals are further stabilized by a a-heteroatom. Indeed, (TMSfsSiH can induce the efficient radical chain monoreduction of 1,3-dithiolane, 1,3-dithiane, 1,3-oxathiolane, 1,3-oxathiolanone, and 1,3-thiazolidine derivatives. Three examples are outlined in Reaction (12). The reaction of benzothiazole sulfenamide with (TMS)3SiH, initiated by the decomposition of AIBN at 76 °C, is an efficient chain process producing the corresponding dialkylamine quantitatively. However, the mechanism of this chain reaction is complex as it is also an example of a degenerate-branched chain process. [Pg.127]

Other chain transfer processes may occur. For example, the radical may abstract an atom from along the backbone of a previously formed polymer molecule, and thus initiate the growth of a branch to the main chain. There can also be chain transfer to monomer, which in the nature of the polymerisation process must be a relatively rare phenomenon. However, it can occur infrequently and give rise to a restriction in the size of the polymer molecules without ceasing the overall radical chain reaction. [Pg.26]


See other pages where Radical chain branching is mentioned: [Pg.251]    [Pg.174]    [Pg.145]    [Pg.355]    [Pg.772]    [Pg.104]    [Pg.251]    [Pg.174]    [Pg.145]    [Pg.355]    [Pg.772]    [Pg.104]    [Pg.791]    [Pg.1106]    [Pg.1008]    [Pg.278]    [Pg.340]    [Pg.340]    [Pg.340]    [Pg.342]    [Pg.229]    [Pg.367]    [Pg.374]    [Pg.480]    [Pg.483]    [Pg.515]    [Pg.516]    [Pg.538]    [Pg.53]    [Pg.209]    [Pg.209]    [Pg.617]    [Pg.631]    [Pg.674]    [Pg.885]    [Pg.483]    [Pg.401]    [Pg.869]    [Pg.174]    [Pg.93]    [Pg.281]    [Pg.13]   
See also in sourсe #XX -- [ Pg.108 ]




SEARCH



Branched chain

Chain branching

Chain radical

© 2024 chempedia.info