Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radical anion clock experiments

The more reactive ylides discriminate less well among the aldehydes in competition experiments (p, KIE), in accordance with the reactivity-selectivity principle (RSP) (15b, 233). Thus, both the KIE and p values could be small. However, Yamataka et al. (223c) question the validity of the RSP in an ET sequence. Their arguments depend on the interpretation of KIE and model reactions for comparison, but it is not clear what experiment would be decisive. Objections to ET mechanisms based on the radical anion clock experiments discussed earlier may also not be decisive because of differences in the counterions. Futhermore, radical clock evidence against ET is available for aliphatic (not aromatic) aldehydes. [Pg.133]

The radical clock experiments as well as the stereochemical outcome of the reaction along with the reactivity profiles observed pointed to an ET process as the operating mechanism. Linear-free energy relationships were also consistent with this mechanistic pathway (see succeeding text). ET may proceed in two ways, usually referred to as inner-sphere and outer-sphere ET, which can be contemplated as the two extremes of a continuous mechanism [204]. Both processes are dissociative in nature for alkyl halides and presumably do not involve a discrete radical anion, RX" [205]. The situation may, however, be different for aryl halides. Radical anions do exist, and aryl halides probably undergo a stepwise reaction with an electron donor to give rise to RX [206]. [Pg.122]

The reaction of bornyl and isobornyl bromides with the nucleophile (Scheme 18) is another case where the amount of inversion is small and the rate constant close to that observed with an aromatic anion radical of the same standard potential (Daasbjerg et al., 1989) it can therefore be rationalized along the same lines. Cyclizable radical-probe experiments carried out with the same nucleophile and 6-bromo-6-methyl-1-heptene, a radical clock presumably slower than the preceding one, showed no cyclized coupling product. It should be noted, on the other hand, that, unlike the case... [Pg.112]

The pioneering work on the calibration of intramolecular cy-clization of the 5-hexenyl radical by Ingold and co-workers provided the basis for the development of a large number of radical clocks." These are now used both for the calibration of rate constants for intermolecular radical reactions and as mechanistic probes to test for the intermediacy of radical intermediates in a variety of processes. Furthermore, the ready availability of bimolecular rate constants from competitive product studies using free radical clocks without the use of time-resolved experiments has greatly enhanced the synthetic utility of free radical chemistry. The same concept has recently been extended to radical ion chemistry. For example, rate constants for carbon—carbon bond cleavage reactions of a variety of radical cations and anions derived from substituted diarylethanes have been measured by direct time-resolved techniques. " ... [Pg.91]


See other pages where Radical anion clock experiments is mentioned: [Pg.91]    [Pg.133]    [Pg.1237]    [Pg.112]    [Pg.280]   
See also in sourсe #XX -- [ Pg.133 ]




SEARCH



Clock

Clocking

Radical anion clocks

Radical clock

Radical clock experiments

© 2024 chempedia.info