Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radiation tensile strength

The importance of polymer composites arises largely from the fact that such low density materials can have unusually high elastic modulus and tensile strength. Polymers have extensive applications in various fields of industry and agriculture. They are used as constructional materials or protective coatings. Exploitation of polymers is of special importance for products that may be exposed to the radiation or temperature, since the use of polymers make it possible to decrease the consumption of expensive (and, sometimes, deficient) metals and alloys, and to extent the lifetime of the whole product. [Pg.239]

In air, PTFE has a damage threshold of 200—700 Gy (2 x 10 — 7 x 10 rad) and retains 50% of initial tensile strength after a dose of 10" Gy (1 Mrad), 40% of initial tensile strength after a dose of 10 Gy (10 lad), and ultimate elongation of 100% or more for doses up to 2—5 kGy (2 X 10 — 5 X 10 rad). During irradiation, resistivity decreases, whereas the dielectric constant and the dissipation factor increase. After irradiation, these properties tend to return to their preexposure values. Dielectric properties at high frequency are less sensitive to radiation than are properties at low frequency. Radiation has veryHtde effect on dielectric strength (86). [Pg.352]

Like other perfluoropolymers. Teflon PFA is not highly resistant to radiation (30). Radiation resistance is improved in vacuum, and strength and elongation ate increased more after low dosages (up to 30 kGy or 3 Mrad) than with FEP or PTEE. Teflon PEA approaches the performance of PTEE between 30 and 100 kGy (3—10 Mrad) and embrittles above 100 kGy (10 Mtads). At 500 kGy (50 Mrad) PTFE, FEP, and PFA ate degraded. The effect of radiation on tensile strength and elongation is shown in Table 7. [Pg.376]

Cold-roUed alloys of lead with 0.06 wt % teUurium often attain ultimate tensile strengths of 25—30 MPa (3625—5350 psi). High mechanical strength, excellent creep resistance, and low levels of alloying elements have made lead—teUurium aUoys the primary material for nuclear shielding for smaU reactors such as those aboard submarines. The aUoy is self-supporting and does not generate secondary radiation. [Pg.61]

Torlon-type polymers are unaffected by aliphatic, aromatic, chlorinated and fluorinated hydrocarbons, dilute acids, aldehydes, ketones, ethers and esters. Resistance to alkalis is poor. They have excellent resistance to radiation. If a total of 10 Mrad is absorbed at a radiation dosage of 1 Mrad/h the tensile strength decreases by only 5%. [Pg.524]

Applied Sciences, Inc. has, in the past few years, used the fixed catalyst fiber to fabricate and analyze VGCF-reinforced composites which could be candidate materials for thermal management substrates in high density, high power electronic devices and space power system radiator fins and high performance applications such as plasma facing components in experimental nuclear fusion reactors. These composites include carbon/carbon (CC) composites, polymer matrix composites, and metal matrix composites (MMC). Measurements have been made of thermal conductivity, coefficient of thermal expansion (CTE), tensile strength, and tensile modulus. Representative results are described below. [Pg.147]

The effects of UV radiation on degradable plastics are usually confined to the exposed surface layers. Tlie general effect is one of embrittlement. Tensile strength may either increase or decrease, but the elongation upon breaking is always reduced. A loss of impact... [Pg.106]

Mechanical properties, such as elastic modulus and yield point, that depend on crystallinity per se are not seriously affected by low to moderate doses of ionizing radiation. On the other hand, those mechanical properties that are sensitive to interlamellar activity are most dramatically affected by the low to moderate radiation doses. This is seen in the ultimate tensile strength and elongation at failure of the polyolefins. It is also reflected in the large change in melt index between 0 and 18 Mrad, which indicates formation of cross-links that increase with increasing... [Pg.98]

EB radiation-cured PVC film surface induces a big improvement in tensile strength and excellent printing ink adhesion and adhesive receptance [302]. PVC foams containing plasticizers, thermally activated blowing agents, cross-linkers, and heat stabilizers have been manufactured by EB radiation technology [303]. [Pg.877]

The tensile strength of NR compounds in the presence of cross-link promoters such as dichlorobenzene is increased as compared to the sulfur-accelerator and peroxide-curing systems. The retention of the maximum tensile strength at elevated temperamres is greater for radiation cured than for chemically vulcanized NR [326,327]. Also reported are a higher abrasion resistance [328] and a lower flex life in the case of radiation-cured system. Effect of phenoxy ethyl acrylate (PEA)... [Pg.879]

PCTFE is less sensitive than PTFE to high-energy radiation. For example, after a SOMrad irradiation, the tensile strength decay is 50%. [Pg.501]

The resistance to gamma radiation is good without significant degradation after 500 Mrad tensile strength retention is 94%. [Pg.572]


See other pages where Radiation tensile strength is mentioned: [Pg.490]    [Pg.376]    [Pg.380]    [Pg.67]    [Pg.327]    [Pg.474]    [Pg.537]    [Pg.5]    [Pg.184]    [Pg.225]    [Pg.369]    [Pg.1108]    [Pg.147]    [Pg.98]    [Pg.99]    [Pg.921]    [Pg.60]    [Pg.171]    [Pg.870]    [Pg.877]    [Pg.877]    [Pg.880]    [Pg.881]    [Pg.891]    [Pg.905]    [Pg.1048]    [Pg.423]    [Pg.921]    [Pg.781]    [Pg.200]    [Pg.43]    [Pg.672]    [Pg.281]    [Pg.18]    [Pg.227]    [Pg.488]    [Pg.131]    [Pg.6]   
See also in sourсe #XX -- [ Pg.143 ]




SEARCH



Tensil strength

© 2024 chempedia.info