Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Racemization steric effects

Shorter chain analogs of DPPC were also investigated in order to determine if the lack of stereo-differentiation in monolayer properties could be due to DPPC s higher gel point or complicating steric effects. Figure 15 shows the compression/expansion isotherms of DPPC as compared with racemic and enantiomeric dimyristoylphosphatidyl choline (DMPC) and dilauroyl phosphatidyl choline (DLPC). Again no stereodifferentiation in monolayer properties was observed as reflected by 11/A isotherms or dynamic surface tension. [Pg.76]

As an extension of this work, Atkinson and co-workers (123) prepared l-dibenzylamino-l,2-dihydro-2-quinolone (78) and 1 -(/V-benzy l-N-carboxy-methyl)amino-l, 2-dihydro-2-quinolone (79). The benzylic protons of 78 showed an AB quartet that did not coalesce up to 180°C, and 79 was resolved into optical isomers. The E, for racemization was 26.2 0.4 kcal/mol. Various attempts were made to elucidate the possible pathways for isomerization in these quinolone derivatives (123). Radical dissociation, a sigmatropic shift followed by rotation, and restricted rotation about the S—N bond were excluded. The aforementioned authors (123) also excluded the possibility of nitrogen inversion and preferred restricted rotation about the N—N bond as an explanation for the existence of stereoisomers. They supported this explanation by examining the steric effects... [Pg.48]

It would usually be assumed that abstraction/recombination reactions such as those illustrated in this section would proceed with racemization at the reacting centers. It has been reported22, however, that photocyclization of amide 1 proceeds with complete retention of absolute configuration. Racemization at the site of abstraction requires orbital rehybridization, passing through a planar intermediate. In this case rehybridization appears to be markedly slowed. This may be an electronic effect due to the heteroatom substituent on the intermediate radical, or simply a steric effect. The structure of product 2 was established by X-ray crystallographic analysis. [Pg.1132]

For a number of years, a storm of controversy raged over this proposal, with H. C. Brown as the chief opponent. Brown ruled out anchimeric assistance as an explanation for the rate acceleration of the exo derivative, arguing that exo was normal, but that endo was unusually slow because of a steric effect. The racemization and isotopic tracer results, he proposed, could be explained by a rapid equilibrium between the classical ions 15 and 17 (see Scheme 1.3), with a steric effect responsible for the exo addition of nucleophiles. In terms of the cation, the question revolves around the issue whether the classical ions 15 and 17 should be joined by the equilibrium depiction (the rapidly rearranging scenario) or with a... [Pg.10]

As in case of other CSPs, the chiral resolution is also effected on protein phases by the structures of the racemic compounds. Allenmark and co-workers [23] resolved several sulfoxides on the BSA-based CSP. These sulfoxides contain different structures with various groups such as methyl, methoxy, and acetate. We analyzed the results of this study and, generally, it was found that the separation factor decreased by introducing larger groups in the sulfoxides. This behavior may be the result of a steric effect the author did not consider in the discussion... [Pg.247]

As in the case of other CSPs, the chiral resolution on these CSPs is also affected by a change in the structures of the racemic compounds. The different selectiv-ities of amino acids on these CSPs may be considerd as the best example. The effect of structures of the racemates on the chiral resolution may be understood from the work carried out by Shieh et al. [71]. The authors studied the chiral resolution of amino acids as their Schiff s bases. These racemates differ slightly in their structure and the substituent, such as alkyl groups, hence showed different values of enantioselectivities. The values of retention and separation factors decreased by introducing bulky groups in the racemates. Aboul-Enein and Ali [70] observed the lower values of retention factors of miconazole in comparison to econazole and sulconazole. The authors explained this sort of behavior on the basis of the steric effect exerted by the extra chlorine atom in miconazole molecule. [Pg.282]

Because the steric effect contributes to the complex formation between guest and host, the chiral resolution on these CSPs is affected by the structures of the analytes. Amino acids, amino alcohols, and derivatives of amines are the best classes for studying the effect of analyte structures on the chiral resolution. The effect of analyte structures on the chiral resolution may be obtained from the work of Hyun et al. [47,48]. The authors studied the chiral resolution of amino alcohols, amides, amino esters, and amino carbonyls. The effects of the substituents on the chiral resolution of some racemic compounds are shown in Table 6. A perusal of this table indicates the dominant effect of steric interactions on chiral resolution. Furthermore, an improved resolution of the racemic compounds, having phenyl moieties as the substituents, may be observed from this Table 6. ft may be the result of the presence of n—n interactions between the CCE and racemates. Generally, the resolution decreases with the addition of bulky groups, which may be caused by the steric effects. In addition, some anions have been used as the mobile phase additives for the improvement of the chiral resolution of amino acids [76]. Recently, Machida et al. [69] reported the use of some mobile phase additives for the improvement of chiral resolution. They observed an improvement in the chiral resolution of some hydrophobic amino compound using cyclodextrins and cations as mobile phase additives. [Pg.307]

Wudl, Padwa, and co-workers found that the Rh(II)-catalyzed 1,3-dipolar cycloaddition of several isomunchnone precursors with C6o readily affords the [3 + 2] cycloadducts, such as ( )-213 (Scheme 1.17).364 On thermolysis, the adducts cleanly regenerated the mesoionic heterocycles, for which they may be used as a repository (Scheme 1.17). When a chiral, racemic isomunchnone precursor was used as starting material, the diastereoisomeric adducts with C60 were formed in unequal amounts which, in the absence of significant steric effects, points toward subtle electronic interactions between the reaction partners.364... [Pg.88]

Retention of Rohrschneider-McReynolds standards of selected chiral alcohols and ketones was measured to determine the thermodynamic selectivity parameters of stationary phases containing (- -)-61 (M = Pr, Eu, Dy, Er, Yb, n = 3, R = Mef) dissolved in poly(dimethylsiloxane) . Separation of selected racemic alcohols and ketones was achieved and the determined values of thermodynamic enantioselectivity were correlated with the molecular structure of the solutes studied. The decrease of the ionic radius of lanthanides induces greater increase of complexation efficiency for the alcohols than for the ketone coordination complexes. The selectivity of the studied stationary phases follows a common trend which is rationalized in terms of opposing electronic and steric effects of the Lewis acid-base interactions between the selected alcohols, ketones and lanthanide chelates. The retention of over fifty solutes on five stationary phases containing 61 (M = Pr, Eu, Dy, Er, Yb, n = 3, R = Mef) dissolved in polydimethylsiloxane were later measured ". The initial motivation for this work was to explore the utility of a solvation parameter model proposed and developed by Abraham and coworkers for complexing stationary phases containing metal coordination centers. Linear solvation... [Pg.721]


See other pages where Racemization steric effects is mentioned: [Pg.77]    [Pg.236]    [Pg.77]    [Pg.62]    [Pg.402]    [Pg.97]    [Pg.315]    [Pg.3]    [Pg.235]    [Pg.475]    [Pg.134]    [Pg.665]    [Pg.475]    [Pg.19]    [Pg.485]    [Pg.19]    [Pg.73]    [Pg.70]    [Pg.80]    [Pg.81]    [Pg.180]    [Pg.181]    [Pg.184]    [Pg.283]    [Pg.33]    [Pg.176]    [Pg.244]    [Pg.154]    [Pg.15]    [Pg.262]    [Pg.590]    [Pg.1223]    [Pg.102]    [Pg.266]    [Pg.80]    [Pg.139]    [Pg.222]    [Pg.175]   
See also in sourсe #XX -- [ Pg.134 ]




SEARCH



Racemization effects

© 2024 chempedia.info