Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quinine catalysts, addition with

The first examples of asymmetric Michael additions of C-nudeophiles to enones appeared in the middle to late 1970s. In 1975 Wynberg and Helder demonstrated in a preliminary publication that the quinine-catalyzed addition of several acidic, doubly activated Michael donors to methyl vinyl ketone (MVK) proceeds asymmetrically [2, 3], Enantiomeric excesses were determined for addition of a-tosylnitro-ethane to MVK (56%) and for 2-carbomethoxyindanone as the pre-nudeophile (68%). Later Hermann and Wynberg reported in more detail that 2-carbomethoxy-indanone (1, Scheme 4.3) can be added to methyl vinyl ketone with ca 1 mol% quinine (3a) or quinidine (3b) as catalyst to afford the Michael-adduct 2 in excellent yields and with up to 76% ee [2, 4], Because of their relatively low basicity, the amine bases 3a,b do not effect the Michael addition of less acidic pre-nucleophiles such as 4 (Scheme 4.3). However, the corresponding ammonium hydroxides 6a,b do promote the addition of the substrates 4 to methyl vinyl ketone under the same mild conditions, albeit with enantioselectivity not exceeding ca 20% [4],... [Pg.47]

Addition of thiophenol to s,j -unsaturated ketones carried out in the presence of catalysts prepared by interacting quinine or quinidine with Mo02(acac)2 affords ketosulfides with much higher optical purities than those obtained in reactions in which the corresponding unmodified alkaloids are used as catalysts135. [Pg.526]

Cyclopentenone as well as acyclic enones have been productively used in the conjugate addition with aromatic and aliphatic thiols employing catalysts 203 [383] and 204 [384] (Fig. 2.28). Quinine-derived urea catalyst 203 is a very active organocatalyst for the addition of aromatic nucleophiles to cyclic and acyclic enones working at rt under very low loading conditions (0.1 mol%) [383]. [Pg.170]

A recent example with a benzoyl derivative is provided by the asymmetric chlorination of 3-aryl-N-Boc-oxindoles with N-chlorosucdnimide as the chlorine source and C9 0-benzyl quinidine 20 as catalyst (Scheme 6.24) [53]. Comparably, benzoyl esters of quinine were applied with metal-containing Lewis acids as co-catalysts for enantioselective [44-2] cycloadditions-for example, the addition of ketene eno-lates to ortho-quinone [54]. [Pg.133]

Michael addition of a-substituted a-nitroallylphosphonates (293) to various nitroolefins (299) have been shown to produce o,y-diaminophos-phonic esters (300) in the presence of a quinine-derived thiourea catalyst (298), with high diastereo- and enantioselectivity (Scheme 100). ... [Pg.295]

Quinine and quinidine, as well as cinchonidine and cinchonine, are diastereo-meric pairs. However, at the critical sites—the P-hydroxyamine portions of the molecules—they are enantiomeric. Thus if quinine is used as the chiral catalyst in an asymmetric transformation (i.e., with one enantiomer being formed in excess), the other enantiomer is formed in excess when quinidine is used. Table 2 gives a representative example, the thiol addition reaction (19). [Pg.91]

These reactions, performed many times, show, in addition to the reversal of the absolute configuration of the product with the change in the configuration at C-8 and C-9 of the alkaloids, a small but reproducible difference in the e.e. of the product. It is evident that the diastereomeric nature of quinine vs. quinidine and cinchonidine vs. cinchonine expresses itself via small but important energy differences in the best fits of the transition states. Noteworthy in this respect is the fine work of Kobayashi (20), who observed larger differences (in the e.e. s of products) when the diastereomeric cinchona alkaloids were used as catalysts after having been copolymerized with acrylonitrile (presumably via the vinyl side chain of the alkaloids). [Pg.91]

The majority of the Michael-type conjugate additions are promoted by amine-based catalysts and proceed via an enamine or iminium intermediate species. Subsequently, Jprgensen et al. [43] explored the aza-Michael addition of hydra-zones to cyclic enones catalyzed by Cinchona alkaloids. Although the reaction proceeds under pyrrolidine catalysis via iminium activation of the enone, and also with NEtj via hydrazone activation, both methods do not confer enantioselectivity to the reaction. Under a Cinchona alkaloid screen, quinine 3 was identified as an effective aza-Michael catalyst to give 92% yield and 1 3.5 er (Scheme 4). [Pg.151]

In the initial screening of various Cinchona alkaloids, the addition of diethyl phosphate 41 to IV-Boc imine 40 in toluene revealed the key role of the free hydroxyl group of the catalyst. Replacing the C(9)-OH group with esters or amides only results in poor selectivity. Quinine (Q) was identified as an ideal catalyst. A mechanistic proposal for the role of quinine is presented. Hydrogen-bonding by the free C(9)-hydroxyl group and quinuclidine base activation of the phosphonate into a nucleophilic phosphite species are key to the reactivity of this transformation (Scheme 9). [Pg.154]

The Soos group, in 2005, prepared the first thiourea derivatives from the cinchona alkaloids quinine QN (8S, 9R-121), dihydroquinidine DHQD (8S, 9S-122), C9-epi-QN (8S, 9P-123), and quinidine QD (SR, 9R-124) via an experimentally simple one-step protocol with epimerization at the C9-position of the alkaloid starting material (Figure 6.39) [278]. The catalytic efficiency of these new thiourea derivatives and also of unmodified QN and C9-epi-QN was evaluated in the enan-tioselective Michael addition [149-152] of nitromethane to the simple model chal-cone 1,3-diphenyl-propenone resulting in adduct 1 in Scheme 6.119. After 99h reaction time at 25 °C in toluene and at 10 mol% catalyst loading QN turned out to be a poor catalyst (4% yield/42% ee (S)-adduct) and C9-epi-QN even failed to accelerate the screening reaction. In contrast, the C9-modified cinchona alkaloid... [Pg.261]

Michael additions of C-nudeophiles such as the indanone 1 have been the subject of numerous further studies For example, the reaction between the indanone 1 and methyl vinyl ketone was effected by a solid-phase-bound quinine derivative in 85% yield and with remarkable 87% ee by d Angelo, Cave et al. [5], Co-polymers of cinchona alkaloids with acrylonitrile effected the same transformation Kobaya-shi and Iwai [6a] achieved 92% yield and 42% ee and Oda et al. [6b] achieved almost quantitative yield and up to 65% ee. Similarly, partially resolved 2-(hydroxy-methyl)quinudidine was found to catalyze the reaction between 1 and acrolein and a-isopropyl acrolein with induction of asymmetry, but no enantiomeric excesses were determined [7]. As shown in Scheme 4.4, the indanone 7 could be added to MVK with up to 80% ee under phase-transfer conditions, by use of the Cinchona-derived PT-catalysts 9a and 9b, affording the Michael-product 8 or enf-8, respectively [8]. The adducts 8 or ent-8 were intermediates in the stereoselective Robinson anellation of a cydohexenone ring to the indanone 7 [8],... [Pg.47]

The asymmetric organocatalytic transformation of a ketone into an alcohol may be realized with the combination achiral silanexhiral phase-transfer catalyst, such a quaternary ammonium salt. The final alcohol is then recovered by an additional hydrolytic step. The asymmetric reduction of aryl alkyl ketones with silanes has been reported (ee-values up to 70%), the catalysts utilized being ammonium fluorides prepared from the quinine/quinidine series (e.g., 18 in Scheme 11.6) [19]. (For experimental details see Chapter 14.21.1). The more appropriated silanes were (Me3SiO)3SiH or (MeO)3SiH (some examples are... [Pg.398]

Further reports on asymmetric synthesis in the presence of Cinchona alkaloids have been made.142 " For example, hydrogenation of methyl pyruvate with a platinum-alumina catalyst containing quinine gives (+)-(/ )-methyl lactate in 87% optical yield.1426 Asymmetric induction with optical yields up to 36 and 26% has been observed in the Michael addition of thiols and nitro-alkanes to ct/ -unsaturated ketones in the presence of quaternary salts derived from the Cinchona alkaloids.142"... [Pg.243]

Selenophenols function as nucleophiles in 1,4-addition reactions to a,J -unsaturated ketones. When this addition is catalyzed by a cinchona alkaloid, chiral 3-(phenylseleno)cycloalkanones 5 are formed in quantitative yield and with up to 67% ee" 5. Moreover, the solid adducts are readily purified to 100% ee by crystallization. A variety of chiral 3-arylselenocyclohexanones have been prepared in this manner using quinine as a catalyst (Table 13). [Pg.626]

Synthesis of Optically Active Epoxides. Alkaloids and alkaloid salts have been successfully used as catalysts for the asymmetric synthesis of epoxides. The use of chiral catalysts such as quinine or quinium benzylchloride (QUIBEC) have allowed access to optically active epoxides through a variety of reaction conditions, including oxidation using Hydrogen Peroxide (eq 5), Darzens condensations (eq 6), epoxidation of ketones by Sodium Hypochlorite (eq 7), halohydrin ring closure (eq 8), and cyanide addition to a-halo ketones (eq 9). Although the relative stereochemistry of most of the products has not been determined, enan-tiomerically enriched materials have been isolated. A more recent example has been published in which optically active 2,3-epoxycyclohexanone has been synthesized by oxidation with t-Butyl Hydroperoxide in the presence of QUIBEC and the absolute stereochemistry of the product established (eq 10). ... [Pg.498]

In 2006, Deng and coworkers reported that quinine/quinidine-derived catalysts (64a,b) bearing a free OH group at the C6 -position and bulky phenanthryl moiety at the 9( Opposition quite efficiently promoted the Michael addition of the a-substituted P-ketoesters 65 to the a,P-unsaturated ketones 66 (Scheme 9.21) [18]. The reaction with as little as 1.0mol% of catalyst 64 afforded excellent stereoselectivity and chemical yields (up to 98% ee with quantitative yield) for a wide range of both donors and acceptors. [Pg.262]


See other pages where Quinine catalysts, addition with is mentioned: [Pg.168]    [Pg.180]    [Pg.249]    [Pg.217]    [Pg.348]    [Pg.393]    [Pg.758]    [Pg.1016]    [Pg.758]    [Pg.1016]    [Pg.211]    [Pg.424]    [Pg.530]    [Pg.328]    [Pg.459]    [Pg.459]    [Pg.194]    [Pg.230]    [Pg.532]    [Pg.39]    [Pg.76]    [Pg.183]    [Pg.235]    [Pg.352]    [Pg.939]    [Pg.415]    [Pg.345]    [Pg.44]    [Pg.485]    [Pg.240]    [Pg.266]    [Pg.270]    [Pg.270]    [Pg.288]   
See also in sourсe #XX -- [ Pg.409 , Pg.417 ]




SEARCH



Addition quinine

Catalyst additives

Quinin

© 2024 chempedia.info