Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elimination quaternary ammonium salts

Quaternary ammonium salts as we have seen are useful m synthetic organic chem istry as phase transfer catalysts In another more direct application quaternary ammo mum hydroxides are used as substrates m an elimination reaction to form alkenes... [Pg.938]

New efficient vulcanization systems have been introduced in the market based on quaternary ammonium salts initially developed in Italy (29—33) and later adopted in Japan (34) to vulcanize epoxy/carboxyl cure sites. They have been found effective in chlorine containing ACM dual cure site with carboxyl monomer (43). This accelerator system together with a retarder (or scorch inhibitor) based on stearic acid (43) and/or guanidine (29—33) can eliminate post-curing. More recently (47,48), in the United States a proprietary vulcanization package based on zinc diethyldithiocarbamate [14324-55-1]... [Pg.477]

Olefins by elimination from quaternary ammonium salts (less substituted olefin preferred). [Pg.174]

The amino functional group is not commonly encountered in steroid synthesis except perhaps in steroidal alkaloids. However, certain elimination reactions have been shown to have theoretical and limited preparative importance, largely due to the efforts of McKenna and co-workers. The Hofmann rule for 2 elimination predicts that alkaline elimination of quaternary ammonium salts will occur towards the carbon carrying the most hydrogen atoms cf. the converse Saytzeff orientation, above). In cyclohexyl systems, the requirement for diaxial elimination appears to be important, as in other 2 eliminations, and the Hofmann rule frequently is not obeyed [e.g., (116) (117)]. [Pg.337]

Amine oxides 2, which can be prepared by oxidation of amines 1, react upon heating to yield an olefin 3 and a hydroxylamine 4. This reaction is called the Cope elimination reaction,and as a synthetic method is a valuable alternative to the Hofmann degradation reaction of quaternary ammonium salts. [Pg.64]

The preparation of an alkene 3 from an amine 1 by application of a /3-elimination reaction is an important method in organic chemistry. A common procedure is the Hofmann elimination where the amine is first converted into a quaternary ammonium salt by exhaustive methylation. Another route for the conversion of amines to alkenes is offered by the Cope elimination. [Pg.162]

The Hofmann elimination reaction is not often used today in the laboratory, but analogous biological eliminations occur frequently, although usually with protonated ammonium ions rather than quaternary ammonium salts. In the biosynthesis of nucleic acids, for instance, a substance called adenylosuccinate... [Pg.937]

Qiana, structure of, 836 Quantum mechanical model, 4-6 Quartet (NMR), 460 Quaternary ammonium salt. 917 Hofmann elimination and, 936-937... [Pg.1313]

Syn elimination and the syn-anti dichotomy have also been found in open-chain systems, though to a lesser extent than in medium-ring compounds. For example, in the conversion of 3-hexyl-4-d-trimethylammonium ion to 3-hexene with potassium ec-butoxide, 67% of the reaction followed the syn-anti dichotomy. In general syn elimination in open-chain systems is only important in cases where certain types of steric effect are present. One such type is compounds in which substituents are found on both the P and the y carbons (the unprimed letter refers to the branch in which the elimination takes place). The factors that cause these results are not completely understood, but the following conformational effects have been proposed as a partial explanation. The two anti- and two syn-periplanar conformations are, for a quaternary ammonium salt ... [Pg.1305]

Aryl vinyl ketones are produced thermally from the corresponding quaternary ammonium salts via Hofmann elimination. However, the conjugated ketones are heat-sensitive and polymerization is difficult to avoid. Traditional preparations afforded only moderate yields. Microwave conditions were established for Hofmann eliminations, performed essentially quantitatively, by batch or continuous processes. [Pg.43]

The reaction of 5-[2-(iV,./V-dimethylamino)ethyl]-l,2,4-oxadiazole with methyl iodide forms the quaternary ammonium salt 170 (Scheme 22), which undergoes elimination in the presence of base (diisopropylethylamine (DIEA), TEA, l,8-diazabicyclo[4.3.0]undec-7-ene, etc.) to form an intermediate 5-vinyl-l,2,4-oxadiazole 171, which undergoes in situ Michael addition with nucleophiles to furnish the Michael adducts 172. As an example, also shown in Scheme 22, 3-hydroxy-pyrrolidine allows the synthesis of compound 172a in 97% yield. Mesylation followed by deprotonation of the 1,2,4-oxadiazole methylene at C-5 enables Sn2 displacement of the mesylate to give the 5-azabicycloheptyl derivative 173, which is a potent muscarinic agonist <1996JOC3228>. [Pg.266]

The ammonium catalyst can also influence the reaction path and higher yields of the desired product may result, as the side reactions are eliminated. In some cases, the structure of the quaternary ammonium cation may control the product ratio with potentially tautomeric systems as, for example, with the alkylation of 2-naph-thol under basic conditions. The use of tetramethylammonium bromide leads to predominant C-alkylation at the 1-position, as a result of the strong ion-pair binding of the hard quaternary ammonium cation with the hard oxy anion, whereas with the more bulky tetra-n-butylammonium bromide O-alkylation occurs, as the binding between the cation and the oxygen centre is weaker [11], Similar effects have been observed in the alkylation of methylene ketones [e.g. 12, 13]. The stereochemistry of the Darzen s reaction and of the base-initiated formation of cyclopropanes under two-phase conditions is influenced by the presence or absence of quaternary ammonium salts [e.g. 14], whereas chiral quaternary ammonium salts are capable of influencing the enantioselectivity of several nucleophilic reactions (Chapter 12). [Pg.2]

The dehydrohalogenation of 1- or 2-haloalkanes, in particular of l-bromo-2-phenylethane, has been studied in considerable detail [1-9]. Less active haloalkanes react only in the presence of specific quaternary ammonium salts and frequently require stoichiometric amounts of the catalyst, particularly when Triton B is used [ 1, 2]. Elimination follows zero order kinetics [7] and can take place in the absence of base, for example, styrene, equivalent in concentration to that of the added catalyst, is obtained when 1-bromo-2-phenylethane is heated at 100°C with tetra-n-butyl-ammonium bromide [8], The reaction is reversible and 1-bromo-l-phenylethane is detected at 145°C [8]. From this evidence it is postulated that the elimination follows a reverse transfer mechanism (see Chapter 1) [5]. The liquidrliquid two-phase p-elimination from 1-bromo-2-phenylethanes is low yielding and extremely slow, compared with the PEG-catalysed reaction [4]. In contrast, solid potassium hydroxide and tetra-n-butylammonium bromide in f-butanol effects a 73% conversion in 24 hours or, in the absence of a solvent, over 4 hours [3] extended reaction times lead to polymerization of the resulting styrene. [Pg.391]

The reductive dehalogenation of vic-dibromides to give the alkenes, using sodium sulphide [32] or sodium trithiocarbonate [33] is aided by the addition of quaternary ammonium salts. Anri-elimination normally occurs is good yield, but is susceptible to steric factors [34], Other functional groups are not reduced by the sulphide. [Pg.395]

In an interesting catalysed conversion of trichloroethene by secondary amines into aminoacetamides, the initial steps are thought to involve the p-elimination of HC1 to produce dichloroethyne (Scheme 9.1), which reacts with the secondary amine under the wet conditions to produce the amide [35] the reaction does not work with N-alkylanilines. Such a mechanism is realistic, as it is well known [36] that trichloroethene is converted into the inflammable and explosive dichloroethyne by bases, and quaternary ammonium salts catalyse the formation of the alkyne when trichloroethene is reacted with oxiranes [37]. Chloroethynes have also been obtained by the catalysed reaction of terminal ethynes with carbon tetrachloride under basic conditions [38]. [Pg.396]

Base-catalysed quaternary ammonium salts give alkenes and 3° amines. This reaction is known as Hofmann elimination or Hofmann degradation. Amines can readily be converted to quaternary ammonium salt by the treatment of excess primary alkyl halides, and then Ag20 and H2O. Quaternary ammonium salts undergo E2 elimination, when heated with NaOH to give alkenes and tertiary amines. Thermal decomposition of a quaternary ammonium salt by NaOH to an alkene is known as Hofmann elimination. [Pg.85]

Cleavage of Quaternary Ammonium Salts with Strong Bases Hydro-trialkylammonio-elimination... [Pg.1017]

Chiral solvomercuration was accomplished by carrying out the reaction of alkenes with Hg(OAc)2 in the presence of chiral quaternary ammonium salts synthesized from natural ephedrine.642 Chiral secondary alcohols may be isolated with ee values up to 96%. Chiral nitrogen-containing diselenides are transformed by perox-odisulfate to selenium electrophiles, which may add to alkenes to form oxyseleny-lation products. These are, however, not isolated but oxidized to induce oxidative p-hydride elimination to afford chiral allyl methyl ethers with ee values up to 75%.643... [Pg.346]

The preparation of tertiary amines with the aid of insoluble supports has mostly been performed by 3-elimination of support-bound quaternary ammonium salts or by N-alkylation of secondary amines with support-bound alkylating agents (Figure 3.28). [Pg.91]


See other pages where Elimination quaternary ammonium salts is mentioned: [Pg.482]    [Pg.482]    [Pg.484]    [Pg.482]    [Pg.482]    [Pg.484]    [Pg.99]    [Pg.385]    [Pg.936]    [Pg.937]    [Pg.199]    [Pg.356]    [Pg.104]    [Pg.9]    [Pg.92]    [Pg.39]    [Pg.72]    [Pg.175]    [Pg.210]    [Pg.626]    [Pg.166]    [Pg.401]    [Pg.117]    [Pg.673]    [Pg.83]    [Pg.74]    [Pg.276]   
See also in sourсe #XX -- [ Pg.954 , Pg.955 , Pg.973 ]




SEARCH



Hofmann elimination quaternary ammonium salts

Quaternary ammonium salt Hofmann elimination and

Quaternary ammonium salts

Quaternary ammonium salts hydroxides Hofmann elimination

Quaternary salts

Reactions of Quaternary Ammonium Salts Hofmann Elimination

Salt elimination

© 2024 chempedia.info