Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quantum interference spontaneous emission control

The effect of quantum interference on spontaneous emission in atomic and molecular systems is the generation of superposition states that can be manipulated, to reduce the interaction with the environment, by adjusting the polarizations of the transition dipole moments, or the amplitudes and phases of the external driving fields. With a suitable choice of parameters, the superposition states can decay with controlled and significantly reduced rates. This modification can lead to subnatural linewidths in the fluorescence and absorption spectra [5,10]. Furthermore, as will be shown in this review, the superposition states can even be decoupled from the environment and the population can be trapped in these states without decaying to the lower levels. These states, known as dark or trapped states, were predicted in many configurations of multilevel systems [11], as well as in multiatom systems [12],... [Pg.81]

The presence of the additional damping terms F12 may suggest that quantum interference enhances spontaneous emission from two coupled systems. However, as we shall illustrate in the following sections, the presence of these terms in the master equation can, in fact, lead to a reduction or even suppression of spontaneous emission. According to Eq. (62), the reduction and suppression of spontaneous emission can be controlled by changing the mutual orientation of the dipole moments of the bare systems. [Pg.98]

The discussion, presented in Section IV, has been concentrated on analysis of the effect of quantum interference on spontaneous emission in a V-type three-level atom. With the specific examples we have demonstrated that spontaneous emission can be controlled and even suppressed by quantum interference. In this section, we extend the analysis to the case of coherently driven systems. We will present simple models for quantum interference in which atomic systems are composed of two coupled dipole subsystems. In particular, we consider interference effects in coherently driven V and A-type three-level atoms. Each of the three systems is represented by two dipole moments, p, and p2, interacting through the vacuum field. [Pg.105]


See other pages where Quantum interference spontaneous emission control is mentioned: [Pg.79]    [Pg.98]    [Pg.128]    [Pg.350]    [Pg.81]    [Pg.98]   
See also in sourсe #XX -- [ Pg.98 , Pg.99 , Pg.100 , Pg.101 , Pg.102 , Pg.103 , Pg.104 ]




SEARCH



Emission control

Emission controlling

Interferences control

Quantum control

Quantum interference

Spontaneous emission

Spontaneous emission quantum interference

© 2024 chempedia.info