Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quantum dynamics, path integrals

We now write an explicit formula for the integrand. There is no unique prescription for how to do this, and significant effort has been expended on developing alternative approaches. However, we follow a relatively simple and well-traveled route that shows the clear connection to the quantum dynamical path integral. If P is sufficiently large, then the matrix elements in the above expression can be approximated by [73-76]... [Pg.130]

It should be noted that in the cases where y"j[,q ) > 0, the centroid variable becomes irrelevant to the quantum activated dynamics as defined by (A3.8.Id) and the instanton approach [37] to evaluate based on the steepest descent approximation to the path integral becomes the approach one may take. Alternatively, one may seek a more generalized saddle point coordinate about which to evaluate A3.8.14. This approach has also been used to provide a unified solution for the thennal rate constant in systems influenced by non-adiabatic effects, i.e. to bridge the adiabatic and non-adiabatic (Golden Rule) limits of such reactions. [Pg.893]

Tuckerman M E and Hughes A 1998 Path integral molecular dynamics a computational approach to quantum statistical mechanics Classical and Quantum Dynamics In Condensed Phase Simulations ed B J Berne, G Ciccotti and D F Coker (Singapore World Scientific) pp 311-57... [Pg.2288]

Hi) The use of quantum methods to obtain correct statistical static (but not dynamic) averages for heavy quantum particles. In this category path-integral methods were developed on the basis of Feynman s path... [Pg.4]

It seems that surface hopping (also called Molecular Dynamics with Quantum Transitions, MDQT) is a rather heavy tool to simulate proton dynamics. A recent and promising development is path integral centroid dynamics [123] that provides approximate dynamics of the centroid of the wavefunctions. Several improvements and applications have been published [123, 124, 125, 126, 127, 128). [Pg.18]

Phase transitions in two-dimensional layers often have very interesting and surprising features. The phase diagram of the multicomponent Widom-Rowhnson model with purely repulsive interactions contains a nontrivial phase where only one of the sublattices is preferentially occupied. Fluids and molecules adsorbed on substrate surfaces often have phase transitions at low temperatures where quantum effects have to be considered. Examples are molecular layers of H2, D2, N2 and CO molecules on graphite substrates. We review the path integral Monte Carlo (PIMC) approach to such phenomena, clarify certain experimentally observed anomalies in H2 and D2 layers, and give predictions for the order of the N2 herringbone transition. Dynamical quantum phenomena in fluids are analyzed via PIMC as well. Comparisons with the results of approximate analytical theories demonstrate the importance of the PIMC approach to phase transitions where quantum effects play a role. [Pg.78]

The calculation of the potential of mean force, AF(z), along the reaction coordinate z, requires statistical sampling by Monte Carlo or molecular dynamics simulations that incorporate nuclear quantum effects employing an adequate potential energy function. In our approach, we use combined QM/MM methods to describe the potential energy function and Feynman path integral approaches to model nuclear quantum effects. [Pg.82]

Jang S, Voth GA (2001) A relationship between centroid dynamics and path integral quantum transition state theory. J Chem Phys 112(8747-8757) Erratum 114, 1944... [Pg.104]

The Feynman-Hibbs and QFH potentials have been used extensively in simulations examining quantum effects in atomic and molecular fluids [12,15,25]. We note here that the centroid molecular dynamics method [54, 55] is related and is intermediate between a full path integral simulation and the Feynman-Hibbs approximation ... [Pg.401]

Diffusion constants are enhanced with the approximate inclusion of quantum effects. Changes in the ratio of diffusion constants for water and D2O with decreasing temperature are accurately reproduced with the QFF1 model. This ratio computed with the QFF1 model agrees well with the centroid molecular dynamics result at room temperature. Fully quantum path integral dynamical simulations of diffusion in liquid water are not presently possible. [Pg.413]

The Car-Parrinello method is similar in spirit to the extended system methods [37] for constant temperature [38, 39] or constant pressure dynamics [40], Extensions of the original scheme to the canonical NVT-ensemble, the NPT-ensemble, or to variable cell constant-pressure dynamics [41] are hence in principle straightforward [42, 43]. The treatment of quantum effects on the ionic motion is also easily included in the framework of a path-integral formalism [44-47]. [Pg.13]

Figure 11. The solid line depicts the quantum adiabatic free energy curve for the Fe /Fe electron transfer at the water/Pt(lll) interface (obtained by using the Anderson-Newns model, path integral quantum transition state theory, and the umbrella sampling of molecular dynamics. The dashed line shows the curve from the classical calculation as given in Fig. 5. (Reprinted from Ref 14.)... Figure 11. The solid line depicts the quantum adiabatic free energy curve for the Fe /Fe electron transfer at the water/Pt(lll) interface (obtained by using the Anderson-Newns model, path integral quantum transition state theory, and the umbrella sampling of molecular dynamics. The dashed line shows the curve from the classical calculation as given in Fig. 5. (Reprinted from Ref 14.)...
Abstract The theoretical basis for the quantum time evolution of path integral centroid variables is described, as weU as the motivation for using these variables to study condensed phase quantum dynamics. The equihbrium centroid distribution is shown to be a well-defined distribution function in the canonical ensemble. A quantum mechanical quasi-density operator (QDO) can then be associated with each value of the distribution so that, upon the application of rigorous quantum mechanics, it can be used to provide an exact definition of both static and dynamical centroid variables. Various properties of the dynamical centroid variables can thus be defined and explored. Importantly, this perspective shows that the centroid constraint on the imaginary time paths introduces a non-stationarity in the equihbrium ensemble. This, in turn, can be proven to yield information on the correlations of spontaneous dynamical fluctuations. This exact formalism also leads to a derivation of Centroid Molecular Dynamics, as well as the basis for systematic improvements of that theory. [Pg.47]

Following Fey nman s original work, several authors pmsued extensions of the effective potential idea to construct variational approximations for the quantum partition function (see, e g., Refs. 7,8). The importance of the path centroid variable in quantum activated rate processes was also explored and revealed, which gave rise to path integral quantum transition state theory and even more general approaches. The Centroid Molecular Dynamics (CMD) method for quantum dynamics simulation was also formulated. In the CMD method, the position centroid evolves classically on the efiective centroid potential. Various analysis and numerical tests for realistic systems have shown that CMD captures the main quantum effects for several processes in condensed matter such as transport phenomena. [Pg.48]

Memory effects play an important role for the description of dynamical effects in open quantum systems. As mentioned above, Meier and Tannor [32] developed a time-nonlocal scheme employing the numerical decomposition of the spectral density. The TL approach as discussed above as well as the approaches by Yan and coworkers [33-35] use similar techniques. Few systems exist for which exact solutions are available and can serve as test beds for the various theories. Among them is the damped harmonic oscillator for which a path-integral solution exists [1], In the simple model of an initially excited... [Pg.348]

The question then arises if a convenient mixed quantum-classical description exists, which allows to treat as quantum objects only the (small number of) degrees of freedom whose dynamics cannot be described by classical equations of motion. Apart in the limit of adiabatic dynamics, the question is open and a coherent derivation of a consistent mixed quantum-classical dynamics is still lacking. All the methods proposed so far to derive a quantum-classical dynamics, such as the linearized path integral approach [2,6,7], the coupled Bohmian phase space variables dynamics [3,4,9] or the quantum-classical Li-ouville representation [11,17—19], are based on approximations and typically fail to satisfy some properties that are expected to hold for a consistent mechanics [5,19]. [Pg.438]


See other pages where Quantum dynamics, path integrals is mentioned: [Pg.223]    [Pg.475]    [Pg.2027]    [Pg.2313]    [Pg.366]    [Pg.417]    [Pg.11]    [Pg.7]    [Pg.106]    [Pg.93]    [Pg.99]    [Pg.314]    [Pg.389]    [Pg.412]    [Pg.413]    [Pg.464]    [Pg.191]    [Pg.193]    [Pg.170]    [Pg.248]    [Pg.288]    [Pg.357]    [Pg.172]    [Pg.127]    [Pg.48]    [Pg.14]    [Pg.14]    [Pg.416]    [Pg.423]    [Pg.347]    [Pg.446]    [Pg.259]   
See also in sourсe #XX -- [ Pg.120 , Pg.121 , Pg.122 , Pg.123 , Pg.124 , Pg.125 ]




SEARCH



Integrable dynamics

Path integrals integral

Quantum dynamical

Quantum dynamics

© 2024 chempedia.info