Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyruvate decarboxylase condensation reaction

Ketols can also be formed enzymatically by cleavage of an aldehyde (step a, Fig. 14-3) followed by condensation with a second aldehyde (step c, in reverse). An enzyme utilizing these steps is transketolase (Eq. 17-15),132b which is essential in the pentose phosphate pathways of metabolism and in photosynthesis. a-Diketones can be cleaved (step d) to a carboxylic acid plus active aldehyde, which can react either via a or c in reverse. These and other combinations of steps are often observed as side reactions of such enzymes as pyruvate decarboxylase. A related thiamin-dependent reaction is that of pyruvate and acetyl-CoA to give the a-diketone, diacetyl, CH3COCOCH3.133 The reaction can be viewed as a displacement of the CoA anion from acetyl-CoA by attack of thiamin-bound active acetaldehyde derived from pyruvate (reverse of step d, Fig. 14-3 with release of CoA). [Pg.736]

The identity of the enzyme(s) involved in the latter reaction has been debated (13). However, the formation of the above hydro-xyketone, in analogy with acetoin, has been conceptualized as the consequence of the condensation of the "active" form of acetaldehyde, that is formed by decarboxylative addition of pyruvate to thiamine pyrophospate, with benzaldehyde.The role of pyruvate, in fact has been established. The same mechanism can be invoked for the reaction of cinnamaldehyde.lt is known that the pyruvate decarboxylase (E.C. 4.1.1.1) accepts as substrates a-oxoacids... [Pg.349]

The biogenesis of solerone 1 and related compounds was successfully rationalized by biomimetic model reactions. As key step we established the pyruvate decarboxylase catalyzed acyloin condensation of pyruvic acid with ethyl 4-oxobutanoate 4 or ethyl 2-oxoglutarate 3 with acetaldehyde. The importance of the ethyl ester function in 3 and 4 serving as substrates for the enzymatic formation of a-hydroxy ketones 5 and 6 was demonstrated. The identification of six yet unknown sherry compounds including acyloins 5 and 6, which have been synthesized for the first time, confirmed the relevance of the biosynthetic pathway. Application of MDGC-MS allowed the enantiodifferentiation of a-ketols and related lactones in complex sherry samples and disclosed details of their biogenetic relationship. [Pg.122]

Pyruvate decarboxylase catalyzes the nonoxidative decarboxylation of pyruvate to acetaldehyde and carbon dioxide. When an aldehyde is present with pyruvate, the enzyme promotes an acyloin condensation reaction. The mechanistic reason for this fortuitous reaction is well understood and involves the aldehyde outcompeting a proton for bond formation with a reactive thiamine pyrophosphate-bound intermediate (90,91). When acetaldehyde is present, the product formed is acetoin. Benzalde-hyde results in the production of phenylacetylcarbinol (Fig. 26). Both of these condensations are enantioselective, forming the R enantiomer preferentially in both cases. [Pg.233]

Most known thiamin diphosphate-dependent reactions (Table 14-2) can be derived from the five halfreactions, a through e, shown in Fig. 14-3. Each half-reaction is an a cleavage which leads to a thiamin- bound enamine (center. Fig. 14-3) The decarboxylation of an a-oxo acid to an aldehyde is represented by step h followed by fl in reverse. The most studied enzyme catalyzing a reaction of this type is yeast pyruvate decarboxylase, an enzyme essential to alcoholic fermentation (Fig. 10-3). There are two 250-kDa isoenzyme forms, one an tetramer and one with an (aP)2 quaternary structure. The isolation of a-hydroxyethylthiamin diphosphate from reaction mixtures of this enzyme with pyruvate provided important verification of the mechanisms of Eqs. 14-14,14-15. Other decarboxylases produce aldehydes in specialized metabolic pathways indolepyruvate decarboxylase in the biosynthesis of the plant hormone indole-3-acetate and ben-zoylformate decarboxylase in the mandelate pathway of bacterial metabolism (Chapter 25). Formation of a-ketols from a-oxo acids also starts with step h of Fig. 14-3 but is followed by condensation with another carbonyl compound in step c, in reverse. An example is decarboxylation of pyruvate and condensation of the resulting active acetaldehyde with a second pyruvate molecule to give l -a-acetolactate, a reaction catalyzed by acetohydroxy acid synthase (acetolactate synthase). Acetolactate is the precursor to valine and leucine. A similar ketol condensation, which is catalyzed by the same S5mthase, is... [Pg.734]

ThDP-dependent carboligases can catalyze acyloin condensations of aliphatic or aromatic donor aldehydes to aliphatic or aromatic acceptors, thus allowing the production of many useftd building blocks (Tables 10.4-10.7). These are the most common reactions catalyzed by ThDP-dependent carboligases such as the pyruvate decarboxylase (PDC) from Saccharomyces cerevisiae (ScPDC), Zymomonas mobilis (ZmPDC), Acetobacter pasteurianus (ApPDC), benzoylformate decarboxylase (BFD) from P. putida (F BFD), and benzaldehyde lyase (BAL) from Psedomonas. fluorescens BidVar 1, which have been recognized as powerful biocatalysts [6,14,48]. [Pg.292]

Pyruvate decarboxylase is able to catalyze two different reactions the nonoxidative decarboxylation of a-keto acids to the corresponding aldehydes [10,15-17] and a car-boxyligase side reaction leading to the formation of hydroxy ketones [18,19]. An understanding of why the last reaction is catalyzed by pyruvate decarboxylase, the physiological role of which is to decarboxylate pyruvate to acetaldehyde, was revealed by the discovery that pyruvate decarboxylase is homologous with acetolactate synthase [20], the enzyme catalyzing an acyloin condensation in the first step of isoleucine-valine biosynthesis. [Pg.268]

Although the utility of transaminases has been widely examined, one such limitation is the fact that the equilibrium constant for the reaction is near unity. Therefore, a shift in this equilibrium is necessary for the reaction to be synthetically useful. A number of approaches to shift the equilibrium can be found in the literature.53 124135 Another method to shift the equilibrium is a modification of that previously described. Aspartate, when used as the amino donor, is converted into oxaloacetate (32) (Scheme 19.21). Because 32 is unstable, it decomposes to pyruvate (33) and thus favors product formation. However, because pyruvate is itself an a-keto acid, it must be removed, or it will serve as a substrate and be transaminated into alanine, which could potentially cause downstream processing problems. This is accomplished by including the alsS gene encoding for the enzyme acetolactate synthase (E.C. 4.1.3.18), which condenses two moles of pyruvate to form (S)-aceto-lactate (34). The (S)-acetolactate undergoes decarboxylation either spontaneously or by the enzyme acetolactate decarboxylase (E.C. 4.1.1.5) to the final by-product, UU-acetoin (35), which is meta-bolically inert. This process, for example, can be used for the production of both l- and d-2-aminobutyrate (36 and 37, respectively) (Scheme 19.21).8132 136 137... [Pg.371]

The newest enzyme for use in beer is acetolactate decarboxylase, used to decrease the fermentation time, by avoiding the formation of diacetyl. Externally or internally produced a-acetolactate decarboxylase transforms the a-acetolactate to acetoin (acetylmethylcarbinol) without the enzyme, acetolactate goes to diacetyl, and then a secondary fermentation slowly reduces it to acetoin. Avoiding or reducing the secondary fermentation results in significant reduction in storage capacity and money tied up in inventory Q). Normally acetolactate forms by the thiaminepyrophosphate-catalyzed acyloin condensation of acetaldehyde and pyruvic acid (2) or by the condensation of two pyruvic acid molecules to yield acetolactate and CC. Acetolactate is important in the synthesis of isoleucine and valine by the yeast. The acetolactate left at the end of the primary fermentation is oxidized spontaneously in a nonenzymatic reaction to diacetvl and C0.> (Eqn. 1)... [Pg.173]

This enzyme catalyses the decarboxylation of the ) -ketoacid oxaloacetate, with the same stoichiometry as acetoacetate decarboxylase. The former however, requires a Mn ion for activity and is insensitive to the action of sodium borohydride. This duality of mechanism is not unlike the one observed for enzymatic aldol condensation, where enzymes of Class 1 react by forming Schiff-base intermediates, whereas enzymes of Class II show metal ion requirements [47]. Oxaloacetate decarboxylase from cod also catalyses the reduction by borohydride of the enzymatic reaction product pyruvate. This is evidenced by the accumulation of D-lactate in presence of enzyme, reducing agent, and manganous ions. It has been proposed that both reduction and decarboxylation occur by way of an enzyme-metal ion-substrate complex in which the metal ion acts as an electron sink, thereby stabilizing the enolate ion formed in the decarboxylation reaction [48] ... [Pg.401]


See other pages where Pyruvate decarboxylase condensation reaction is mentioned: [Pg.587]    [Pg.736]    [Pg.293]    [Pg.341]    [Pg.736]    [Pg.244]    [Pg.963]    [Pg.212]    [Pg.328]    [Pg.284]    [Pg.7]    [Pg.318]   
See also in sourсe #XX -- [ Pg.269 , Pg.270 , Pg.271 , Pg.272 , Pg.273 , Pg.274 , Pg.275 , Pg.276 , Pg.277 , Pg.278 , Pg.279 , Pg.280 ]




SEARCH



Pyruvate decarboxylase

Pyruvate decarboxylase reactions

Pyruvate reactions

© 2024 chempedia.info