Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyrolysis composition

Metal-carbon nanocomposites containing bimetallic nanosized Pt-Ru (Pt-Re) particles were prepared in the course of IR-pyrolysis composite-precursor containing PAN as well as H2PtCl6 and RuCL, (or NFEReCA) in the ratio Pt Ru (Re) = 10 1. [Pg.583]

Acetone was originally observed about 1595 as a product of the distillation of sugar of lead (lead acetate). In the nineteenth century it was obtained by the destmctive distillation of metal acetates, wood, and carbohydrates with lime, and pyrolysis of citric acid. Its composition was determined by Liebig and Dumas in 1832. [Pg.94]

Analytical investigations may be undertaken to identify the presence of an ABS polymer, characterize the polymer, or identify nonpolymeric ingredients. Fourier transform infrared (ftir) spectroscopy is the method of choice to identify the presence of an ABS polymer and determine the acrylonitrile—butadiene—styrene ratio of the composite polymer (89,90). Confirmation of the presence of mbber domains is achieved by electron microscopy. Comparison with available physical property data serves to increase confidence in the identification or indicate the presence of unexpected stmctural features. Identification of ABS via pyrolysis gas chromatography (91) and dsc ((92) has also been reported. [Pg.204]

The Beckstead-Derr-Price model (Fig. 1) considers both the gas-phase and condensed-phase reactions. It assumes heat release from the condensed phase, an oxidizer flame, a primary diffusion flame between the fuel and oxidizer decomposition products, and a final diffusion flame between the fuel decomposition products and the products of the oxidizer flame. Examination of the physical phenomena reveals an irregular surface on top of the unheated bulk of the propellant that consists of the binder undergoing pyrolysis, decomposing oxidizer particles, and an agglomeration of metallic particles. The oxidizer and fuel decomposition products mix and react exothermically in the three-dimensional zone above the surface for a distance that depends on the propellant composition, its microstmcture, and the ambient pressure and gas velocity. If aluminum is present, additional heat is subsequently produced at a comparatively large distance from the surface. Only small aluminum particles ignite and bum close enough to the surface to influence the propellant bum rate. The temperature of the surface is ca 500 to 1000°C compared to ca 300°C for double-base propellants. [Pg.36]

Fig. 1. The postulated flame stmcture for an AP composite propellant, showing A, the primary flame, where gases are from AP decomposition and fuel pyrolysis, the temperature is presumably the propellant flame temperature, and heat transfer is three-dimensional followed by B, the final diffusion flame, where gases are O2 from the AP flame reacting with products from fuel pyrolysis, the temperature is the propellant flame temperature, and heat transfer is three-dimensional and C, the AP monopropellant flame where gases are products from the AP surface decomposition, the temperature is the adiabatic flame temperature for pure AP, and heat transfer is approximately one-dimensional. AP = ammonium perchlorate. Fig. 1. The postulated flame stmcture for an AP composite propellant, showing A, the primary flame, where gases are from AP decomposition and fuel pyrolysis, the temperature is presumably the propellant flame temperature, and heat transfer is three-dimensional followed by B, the final diffusion flame, where gases are O2 from the AP flame reacting with products from fuel pyrolysis, the temperature is the propellant flame temperature, and heat transfer is three-dimensional and C, the AP monopropellant flame where gases are products from the AP surface decomposition, the temperature is the adiabatic flame temperature for pure AP, and heat transfer is approximately one-dimensional. AP = ammonium perchlorate.
Table 16. Char and Gas Composition from Pyrolysis of Municipal Solid Waste Organics ... Table 16. Char and Gas Composition from Pyrolysis of Municipal Solid Waste Organics ...
The conditions of pyrolysis either as low or high temperature carbonization, and the type of coal, determine the composition of Hquids produced, known as tars. Humic coals give greater yields of phenol (qv) [108-95-2] (up to 50%), whereas hydrogen-rich coals give more hydrocarbons (qv). The whole tar and distillation fractions are used as fuels and as sources of phenols, or as an additive ia carbonized briquettes. Pitch can be used as a biader for briquettes, for electrode carbon after coking, or for blending with road asphalt (qv). [Pg.159]

Carbon—Carbon Composites. Above 300°C, even such polymers as phenoHcs and polyimides are not stable as binders for carbon-fiber composites. Carbon—carbon composites are used at elevated temperatures and are prepared by impregnating the fibers with pitch or synthetic resin, foUowed by carbonization, further impregnation, and pyrolysis (91). [Pg.307]

Combination techniques such as microscopy—ftir and pyrolysis—ir have helped solve some particularly difficult separations and complex identifications. Microscopy—ftir has been used to determine the composition of copolymer fibers (22) polyacrylonitrile, methyl acrylate, and a dye-receptive organic sulfonate trimer have been identified in acryHc fiber. Both normal and grazing angle modes can be used to identify components (23). Pyrolysis—ir has been used to study polymer decomposition (24) and to determine the degree of cross-linking of sulfonated divinylbenzene—styrene copolymer (25) and ethylene or propylene levels and ratios in ethylene—propylene copolymers (26). [Pg.148]

Carbon Composites. Cermet friction materials tend to be heavy, thus making the brake system less energy-efficient. Compared with cermets, carbon (or graphite) is a thermally stable material of low density and reasonably high specific heat. A combination of these properties makes carbon attractive as a brake material and several companies are manufacturing carbon fiber—reinforced carbon-matrix composites, which ate used primarily for aircraft brakes and race cats (16). Carbon composites usually consist of three types of carbon carbon in the fibrous form (see Carbon fibers), carbon resulting from the controlled pyrolysis of the resin (usually phenoHc-based), and carbon from chemical vapor deposition (CVD) filling the pores (16). [Pg.273]

It is not possible, however, to calculate accurately actual gas composition by using the relationships of reactions (27-14) to (27-19) in Table 27-12. Since the gasification of coal always takes place at elevated temperatures, thermal decomposition (pyrolysis) takes place as coal enters the gasification reactor. Reaction (27-15) treats coal as a compound of carbon and hydrogen and postulates its thermal disintegration to produce carbon (coke) ana methane. Reaction (27-21) assumes the stoichiometiy of hydrogasifying part of the carbon to produce methane and carbon. [Pg.2369]

After brief discussion of the state-of-the-art of modern Py-GC/MS, some most recent applications for stixictural and compositional chai acterization of polymeric materials are described in detail. These include microstixictural studies on sequence distributions of copolymers, stereoregularity and end group chai acterization for various vinyl-type polymers such as polystyrene and polymethyl methacrylate by use of conventional analytical pyrolysis. [Pg.17]

Similarly, low-temperature photolysis of 4,5,6-fluorosubstituted 1,2,3-tna zines results in the elimination of nitrogen, but the product composition depends on the substituents When the substituents are fluonne atoms, the intermediate product IS a four-membered, mtrogen-contaming ring that quickly dimenzes When all the substituents are perfluoroalkyl groups, the pyrolysis results in a mixture perfluoroalkyl acetylenes and perfluoroalkyl cyanides [79] (equations 48 and 49). [Pg.903]

Thermogravimetry may be used to determine the composition of binary mixtures. If each component possesses a characteristic unique pyrolysis curve, then a resultant curve for the mixture will afford a basis for the determination of its composition. In such an automatic gravimetric determination the initial weight of the sample need not be known. A simple example is given by the automatic determination of a mixture of calcium and strontium as their carbonates. [Pg.433]


See other pages where Pyrolysis composition is mentioned: [Pg.378]    [Pg.378]    [Pg.5]    [Pg.186]    [Pg.36]    [Pg.175]    [Pg.276]    [Pg.22]    [Pg.22]    [Pg.382]    [Pg.383]    [Pg.147]    [Pg.148]    [Pg.149]    [Pg.149]    [Pg.241]    [Pg.125]    [Pg.342]    [Pg.266]    [Pg.497]    [Pg.504]    [Pg.1]    [Pg.17]    [Pg.17]    [Pg.139]    [Pg.170]    [Pg.439]    [Pg.8]    [Pg.524]    [Pg.528]    [Pg.127]    [Pg.313]    [Pg.43]    [Pg.405]    [Pg.121]   
See also in sourсe #XX -- [ Pg.81 , Pg.101 ]




SEARCH



© 2024 chempedia.info