Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

2-Pyridyl catalyst, oxidation with

Biomimetic Cu(II) and Fe(II) complexes with bis- and tris-pyridyl amino and imino thioether ligands and vacant (or potentially so) coordination positions (Fig. y are active as catalyst precursors for the solvent- and halogen-free MW-assisted oxidation of 1-phenylethanol by TBHP, in the presence of pyridazine or other N-based additives. Maximum TOF of 5220 h (corresponding to 87% yield) was achieved just after 5 min of reaction time under the low power MW irradiation. The same authors reported" the catalytic activity of related copper, iron, and vanadium systems with mixed-N,S pyridine thioether hgands. The Cu and Fe complexes proved to be useful catalysts in various MW-assisted alcohol oxidations with TBHP, at 80 °C. Thus, 5-containing ligands can also be used to create effective catalyst precursors. [Pg.97]

If the more activated alkene 2-vinylpyridine is used in place of styrene with the same catalysts and the same range of substrates, anti-Markovnikoff hydroamination is also found. Thus, N-[2-(2 -pyridyl)ethyl]piperidine was isolated in 53% yield from reaction of 2-vinylpyridine with piperidine in the presence of [Rh(COD)2]+/2PPh3 under reflux. N H addition was observed with other amines, the remaining product in all cases being primarily that from oxidative amination (Table 12). When the catalytic reaction was run in the absence of phosphine, the yield of hydroamination product increased dramatically.171... [Pg.292]

Fig. 24.8) [122]. Whilst this protocol can be used to prepare 3-pyridyl-alanine derivatives [22], the corresponding 2-pyridyl-alanine cannot be made [122]. However, Adamczyk has prepared several 2-pyridyl-alanine analogues through hydrogenation of the pyridine-N-oxide substrates in 80-83% ee (see Fig. 24.8) [123]. In general, only when the 2- and 6-positions of the pyridine ring are occupied can 2-, 3- or 4-pyridyl-alanine derivatives be prepared, without nitrogen modification, via hydrogenation with [phospholane-Rh]+ catalysts [122-124]. Fig. 24.8) [122]. Whilst this protocol can be used to prepare 3-pyridyl-alanine derivatives [22], the corresponding 2-pyridyl-alanine cannot be made [122]. However, Adamczyk has prepared several 2-pyridyl-alanine analogues through hydrogenation of the pyridine-N-oxide substrates in 80-83% ee (see Fig. 24.8) [123]. In general, only when the 2- and 6-positions of the pyridine ring are occupied can 2-, 3- or 4-pyridyl-alanine derivatives be prepared, without nitrogen modification, via hydrogenation with [phospholane-Rh]+ catalysts [122-124].
Tris(oxazoline) complexes have also been investigated as ligands in the allylic oxidation reaction. Katsuki and co-workers (116) observed that Cu(OTf)2 com-plexed to the tris(oxazoline) 160 is a more selective catalyst than one derived from CuOTf, Eq. 99, in direct contrast to results observed with bis(oxazohnes) or pyridyl bis(oxazohnes) as ligands (cf. Section III.A.3). When the reaction is conducted at -20°C, the cyclopentenyl benzoate is delivered in 88% ee albeit in only 11% yield after 111 h. Larger cycloalkenes are less selective (cyclohexene 56% ee, cyclohep-tene 14% ee, cyclooctene 54% ee). [Pg.62]

A number of routes are available for the synthesis of 2,2 -bipyridines where one of the pyridine rings is built up from simpler entities. For example, condensation of 2-(aminomethyl)pyridine (31) with acetaldehyde or acetylene over a silicon-alumina catalyst at 450°C gives 2,2 -bipyridine, ° whereas 2-cyanopyridine reacts with acetylene at 120°C in the presence of a cobalt catalyst to afford 2,2 -bipyridine in 95% yield.2-Acetylpyridine with acrolein and ammonia gives 2,2 -bipyridine in the presence of dehydrating and dehydrogenating catalysts, and related condensations afford substituted 2,2 -bipyridines. ° In a similar vein, condensation of benzaldehyde with 2 mol of 2-acetylpyridine in the presence of ammonia at 250°C affords 2,6-di(2-pyridyl)-4-phenylpyridine, ° and related syntheses of substituted 2,2 6, 2"-terpyridines have been described. Likewise, formaldehyde with two moles of ethyl picolinoylacetate and ammonia, followed by oxidation of the product and hydrolysis and decarboxylation, affords a good... [Pg.309]

To complete the section on the synthesis of 4,4 -bipyridines, we summarize the methods reported for the preparation of some substituted 4,4 -bi-pyridines and 4,4 -bipyridinones. These methods are closely analogous to syntheses already discussed for some of the isomeric bipyridines. Thus the Hantzsch reaction using pyridine-4-aldehyde, ethyl acetoacetate, and ammonia gives 3,5-di(ethoxycarbonyl)-1,4-dihydro-2,6-dimethyl-4,4 -bipyridine, which after oxidation, followed by hydrolysis and decarboxylation, afforded 2,6-dimethyl-4,4 -bipyridine. Several related condensations have been reported. Similarly, pyridine-4-aldehyde and excess acetophenone gave l,5-diphenyl-3-(4-pyridyl)pentane-l,5-dione, which with ammonium acetate afforded 2,6-diphenyl-4,4 -bipyridine. Alternatively, 1-phenyl-3-(4-pyridyl)prop-2-enone, A-phenacylpyridinium bromide, and ammonium acetate gave the same diphenyl-4,4 -bipyridine, and extensions of this synthesis have been discribed. Condensation of pyridine-4-aldehyde with malononitrile in the presence of an alcohol and alkaline catalyst produced compounds such as whereas condensations of... [Pg.330]

A solution of 4-[2-(5-ethyl-2-pyridyl)ethoxy]nitrobenzene (60.0 g) in methanol (500 ml) was hydrogenated at room temperature under one atmospheric pressure in the presence of 10% Pd-C (50% wet, 6.0 g). The catalyst was removed by filtration and the filtrate was concentrated under reduced pressure. The residual oil was dissolved in acetone (500 ml)-methanol (200 ml). To the solution was added a 47% HBr aqueous solution (152 g). The mixture was cooled, to which was added dropwise a solution of NaN02 (17.3 g) in water (30 ml) at a temperature not higher than 5°C. The whole mixture was stirred at 5°C for 20 min, then methyl acrylate (112 g) was added thereto and the temperature was raised to 38°C. Cuprous oxide (2.0 g) was added to the mixture in small portions with vigorous stirring. The reaction mixture was stirred until nitrogen gas evolution ceased, and was concentrated under reduced pressure. The concentrate was made alkaline with concentrated aqueous ammonia, and extracted with ethyl acetate. The ethyl acetate layer was washed with water and dried (MgS04) The solvent was evaporated off to leave methyl 2-bromo-3- 4-[2-(5-ethyl-2-pyridyl)ethoxy]phenyl propionate as a crude oil (74.09 g, 85.7%). [Pg.2754]

Hydrogenations of acetylpyridines were carried out similarly, and yielded various products depending on the reaction conditions and especially on the catalyst used. Thus 4-acetylpyridine was hydrogenated over palladium oxide to form the corresponding alcohol, 4-(l-hydroxyethyl)pyridine, with a small amount of the pinacol (4), but it was converted mainly to the pinacol using palladium on charcoal or rhodium on alumina. However, under different conditions, the pyridyl ring of 3-acetylpyridine was reduced to a mixture of 3-acetyl-l, 4,5,6-tetrahydropyridine and 3-acetylpiperidine. [Pg.141]


See other pages where 2-Pyridyl catalyst, oxidation with is mentioned: [Pg.284]    [Pg.790]    [Pg.350]    [Pg.450]    [Pg.451]    [Pg.37]    [Pg.309]    [Pg.264]    [Pg.79]    [Pg.341]    [Pg.17]    [Pg.56]    [Pg.35]    [Pg.220]    [Pg.73]    [Pg.238]    [Pg.85]    [Pg.73]    [Pg.238]    [Pg.196]    [Pg.347]    [Pg.174]    [Pg.479]    [Pg.314]    [Pg.315]    [Pg.320]    [Pg.329]    [Pg.223]    [Pg.479]    [Pg.181]    [Pg.221]    [Pg.202]    [Pg.303]    [Pg.72]    [Pg.509]    [Pg.538]    [Pg.11]    [Pg.4099]    [Pg.71]    [Pg.56]    [Pg.176]    [Pg.950]   
See also in sourсe #XX -- [ Pg.110 ]




SEARCH



Pyridyls

© 2024 chempedia.info