Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyridine 1-oxide, 2-methyl-, reaction with

The five-coordinate complexes Ir(CO)(PPh3)2L, where HL = /3-diketone, A-benzoyl-A-phenyl-hydroxylamine, salicylaldehyde, 8-hydroxyquinoline, 2-hydroxybenzophenone, 2-hydroxy-8-methoxybenzophenone, were prepared from [Ir(CO)(PPh3)2Cl].632 The resulting compounds all underwent oxidative addition reactions with Br2. Reaction of [(cod)2IrCl]2 with N-substituted 3-hydroxy-2-methyl-4-pyridine gives the bichelated complex (389). 33... [Pg.219]

The bipyridyl herbicide Paraquat is made by reduction of pyridine to radical ions, which couple at the para positions. Oxidation and reaction with methyl bromide gives paraquat. Diquat is formed by dehydrogenation of pyridine and quaternization with ethylene dibromide. [Pg.257]

A powerful oxidizer. Explosive reaction with acetaldehyde, acetic acid + heat, acetic anhydride + heat, benzaldehyde, benzene, benzylthylaniUne, butyraldehyde, 1,3-dimethylhexahydropyrimidone, diethyl ether, ethylacetate, isopropylacetate, methyl dioxane, pelargonic acid, pentyl acetate, phosphoms + heat, propionaldehyde, and other organic materials or solvents. Forms a friction- and heat-sensitive explosive mixture with potassium hexacyanoferrate. Ignites on contact with alcohols, acetic anhydride + tetrahydronaphthalene, acetone, butanol, chromium(II) sulfide, cyclohexanol, dimethyl formamide, ethanol, ethylene glycol, methanol, 2-propanol, pyridine. Violent reaction with acetic anhydride + 3-methylphenol (above 75°C), acetylene, bromine pentafluoride, glycerol, hexamethylphosphoramide, peroxyformic acid, selenium, sodium amide. Incandescent reaction with alkali metals (e.g., sodium, potassium), ammonia, arsenic, butyric acid (above 100°C), chlorine trifluoride, hydrogen sulfide + heat, sodium + heat, and sulfur. Incompatible with N,N-dimethylformamide. [Pg.365]

Other reactions with their counterparts in the pyridine series are also well known. Thus, 2,3-dimethylpyrazine 1,4-dioxide reacts with acetic anhydride to yield 2,3-bis(acetoxy-methyl)pyrazine (S3) in good yield (72KGS1275). Pyrazine 1-oxide also reacts directly with acetic anhydride to yield 2(ljH)-pyrazinone by way of the intermediate acetate (Scheme 22). The corresponding reaction in the quinoxaline series is not so well defined and at least three products result (Scheme 23) (67YZ942). [Pg.171]

Cyclic hydroxamic acids and V-hydroxyimides are sufficiently acidic to be (9-methylated with diazomethane, although caution is necessary because complex secondary reactions may occur. N-Hydroxyisatin (105) reacted with diazomethane in acetone to give the products of ring expansion and further methylation (131, R = H or CH3). The benzalphthalimidine system (132) could not be methylated satisfactorily with diazomethane, but the V-methoxy compound was readil3 obtained by alkylation with methyl iodide and potassium carbonate in acetone. In the pyridine series, 1-benzyl-oxy and l-allyloxy-2-pyridones were formed by thermal isomeriza-tion of the corresponding 2-alkyloxypyridine V-oxides at 100°. [Pg.232]

Alkyl-1,4-dihydropyridines on reaction with peracids undergo either extensive decomposition or biomimetic oxidation to A-alkylpyridinum salts (98JOC10001). However, A-methoxycarbonyl derivatives of 1,4- and 1,2-dihydro-pyridines (74) and (8a) react with m-CPBA to give the methyl tmns-2- 2>-chlorobenzoyloxy)-3-hydroxy-1,2,3,4-tetrahydropyridine-l-carboxylate (75) and methyl rran.s-2-(3-chlorobenzoyloxy)-3-hydroxy-l,2,3,6-tetrahydropyridine-l-carboxylate (76) in 65% and 66% yield, respectively (nonbiomimetic oxidation). The reaction is related to the interaction of peracids with enol ethers and involves the initial formation of an aminoepoxide, which is opened in situ by m-chlorobenzoic acid regio- and stereoselectively (57JA3234, 93JA7593). [Pg.285]

A mixture of 50 g of betamethasone, 50 cc of dimethylformamide, 50 cc of methyl orthobenzoate and 1.5 g of p-toluenesulfonicacid Is heated for 24 hours on oil bath at 105°C while a slow stream of nitrogen is passed through the mixture and the methanol produced as a byproduct of the reaction is distilled off. After addition of 2 cc of pyridine to neutralize the acid catalyst the solvent and the excess of methyl orthobenzoate are almost completely eliminated under vacuum at moderate temperature. The residue Is chromatographed on a column of 1,500 g of neutral aluminum oxide. By elution with ether-petroleum ether 30 g of a crystalline mixture are obtained consisting of the epimeric mixture of 170 ,21 -methyl orthobenzoates. This mixture is dissolved without further purification, in 600 cc of methanol and 240 cc of methanol and 240 cc of aqueous 2 N oxalic acid are added to the solution. The reaction mixture is heated at 40°-50°C on water bath, then concentrated under vacuum. The residue, crystallized from acetone-ether, gives betamethasone 17-benzoate, MP 225°-231°C. [Pg.167]

The addition of Grignard reagents to aldehydes, ketones, and esters is the basis for the synthesis of a wide variety of alcohols, and several examples are given in Scheme 7.3. Primary alcohols can be made from formaldehyde (Entry 1) or, with addition of two carbons, from ethylene oxide (Entry 2). Secondary alcohols are obtained from aldehydes (Entries 3 to 6) or formate esters (Entry 7). Tertiary alcohols can be made from esters (Entries 8 and 9) or ketones (Entry 10). Lactones give diols (Entry 11). Aldehydes can be prepared from trialkyl orthoformate esters (Entries 12 and 13). Ketones can be made from nitriles (Entries 14 and 15), pyridine-2-thiol esters (Entry 16), N-methoxy-A-methyl carboxamides (Entries 17 and 18), or anhydrides (Entry 19). Carboxylic acids are available by reaction with C02 (Entries 20 to 22). Amines can be prepared from imines (Entry 23). Two-step procedures that involve formation and dehydration of alcohols provide routes to certain alkenes (Entries 24 and 25). [Pg.638]

Poly(methyl 3-(l-oxypyridinyl)siloxane) was synthesized and shown to have catalytic activity in transacylation reactions of carboxylic and phosphoric acid derivatives. 3-(Methyldichlorosilyl)pyridine (1) was made by metallation of 3-bromopyridine with n-BuLi followed by reaction with excess MeSiCl3. 1 was hydrolyzed in aqueous ammonia to give hydroxyl terminated poly(methyl 3-pyridinylsiloxane) (2) which was end-blocked to polymer 3 with (Me3Si)2NH and Me3SiCl. Polymer 3 was N-oxidized with m-ClC6H4C03H to give 4. Species 1-4 were characterized by IR and H NMR spectra. MS of 1 and thermal analysis (DSC and TGA) of 2-4 are discussed. 3-(Trimethylsilyl)-pyridine 1-oxide (6), l,3-dimethyl-l,3-bis-3-(l-oxypyridinyl) disiloxane (7) and 4 were effective catalysts for conversion of benzoyl chloride to benzoic anhydride in CH2Cl2/aqueous NaHCC>3 suspensions and for hydrolysis of diphenyl phosphorochloridate in aqueous NaHCC>3. The latter had a ti/2 of less than 10 min at 23°C. [Pg.199]


See other pages where Pyridine 1-oxide, 2-methyl-, reaction with is mentioned: [Pg.270]    [Pg.119]    [Pg.270]    [Pg.409]    [Pg.33]    [Pg.942]    [Pg.943]    [Pg.208]    [Pg.213]    [Pg.166]    [Pg.792]    [Pg.416]    [Pg.208]    [Pg.220]    [Pg.227]    [Pg.127]    [Pg.185]    [Pg.219]    [Pg.640]    [Pg.231]    [Pg.435]    [Pg.94]    [Pg.60]    [Pg.165]    [Pg.136]    [Pg.225]    [Pg.103]    [Pg.98]    [Pg.168]    [Pg.201]    [Pg.425]    [Pg.145]    [Pg.462]    [Pg.193]    [Pg.1234]    [Pg.1268]    [Pg.22]    [Pg.452]    [Pg.308]   


SEARCH



1- Methyl pyridine

2- pyridine, oxidative

Methyl 3-oxid

Methyl oxide

Methyl, oxidation

Pyridin methylation

Pyridination reaction

Pyridine oxide, oxidant

Pyridine with

Pyridine, reactions

Reactions, with pyridine

© 2024 chempedia.info