Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyridine commercial preparation

Ketene itself is commercially prepared in this manner. Carboxylic acids have also been converted to ketenes by treatment with certain reagents, among them TsCl, dicyclohexylcarbodiimide, and l-methyl-2-chloropyridinium iodide (Mukaiya-ma s reagent) Analogously, amides can be dehydrated with P2O5, pyridine. [Pg.1514]

Commercially, pyridine is prepared by the gas phase, high-temperature reaction of crotonaldehyde, formaldehyde, steam, air, and ammonia over a silica-alumina catalyst in 60-70% yield. However, in the laboratory, the challenge is in the preparation of substituted pyridine derivatives in a process that allows one to control regioselectivity and chemoselectivity in the most efficient manner. In this regard the utility of palladium-catalyzed cross-coupling reactions has enabled synthetic chemists by providing the ability to construct highly diversified pyridine derivatives in an efficient fashion [2]. [Pg.190]

Pyridine is prepared commercially by the gas-phase, high-temperature reaction of crotonaldehyde, formaldehyde, steam, air, and ammonia over a silica-alumina catalyst in 60-70% yield. We will illustrate some of the common laboratory methodologies for the construction of substituted-... [Pg.399]

The commercial preparation of ammonia is accomplished in huge quantities by the Haber process [Equation (16.12)], discussed in Section 16.4 under Nitrogen Fixation. In the laboratory the most common preparation is the treatment of ammonium salts with strong bases, as represented in Equation (16.13).The self-ionization of liquid ammonia (analogous to that of liquid water) is shown in Equation (16.14). NH3(/) is often used as a nonaqueous solvent. As shown in Equation (16.15), NH3 acts as a weak base in water and serves as a prototype for a number of nitrogen-containing bases such as methylamine, pyridine, and aniline, which you may recall from studying acid-base equilibria in earlier courses. [Pg.469]

Polymer blends are physical mixtures of two or more polymers and are commercially prepared by mechanical mixing, which is achieved through screw compounders and extruders. In these mixtures, different polymers tend to separate (instead of mixing uniformly) into two or more distinct phases due to incompatibility. One measure taken to improve miscibility is to introduce specific interactive functionalities on polymer pairs. Hydrogen-bondings have been shown to increase miscibility and, as a consequence, improve the strength of the blends. Eisenberg and co-workers have also employed acid-base interaction (as in sulfonated polystyrene with polyethylmethacrylate-Co-4-vinyl pyridine) and ion-dipole interaction (as in polystyrene-Co-lithium methacrylate and polyethylene oxide) to form improved blends. [Pg.68]

Low DS starch acetates ate manufactured by treatment of native starch with acetic acid or acetic anhydride, either alone or in pyridine or aqueous alkaline solution. Dimethyl sulfoxide may be used as a cosolvent with acetic anhydride to make low DS starch acetates ketene or vinyl acetate have also been employed. Commercially, acetic anhydride-aqueous alkaU is employed at pH 7—11 and room temperature to give a DS of 0.5. High DS starch acetates ate prepared by the methods previously detailed for low DS acetates, but with longer reaction time. [Pg.345]

Mixed cellulose esters containing the dicarboxylate moiety, eg, cellulose acetate phthalate, have commercially useful properties such as alkaline solubihty and excellent film-forming characteristics. These esters can be prepared by the reaction of hydrolyzed cellulose acetate with a dicarboxyhc anhydride in a pyridine or, preferably, an acetic acid solvent with sodium acetate catalyst. Cellulose acetate phthalate [9004-38-0] for pharmaceutical and photographic uses is produced commercially via the acetic acid—sodium acetate method. [Pg.249]

Production of cellulose esters from aromatic acids has not been commercialized because of unfavorable economics. These esters are usually prepared from highly reactive regenerated cellulose, and their physical properties do not differ markedly from cellulose esters prepared from the more readily available aHphatic acids. Benzoate esters have been prepared from regenerated cellulose with benzoyl chloride in pyridine—nitrobenzene (27) or benzene (28). These benzoate esters are soluble in common organic solvents such as acetone or chloroform. Benzoate esters, as well as the nitrochloro-, and methoxy-substituted benzoates, have been prepared from cellulose with the appropriate aromatic acid and chloroacetic anhydride as the impelling agent and magnesium perchlorate as the catalyst (29). [Pg.251]

Cellulose chloroacetates (30) and aminoacetates (30,31), acetate sorbates (32), and acetate maleates (33) have been prepared but are not commercially important. These esters are made from hydrolyzed cellulose acetate with the appropriate anhydride or acid chloride in pyridine. [Pg.251]

Selective fluonnation in polar solvents has proved commercially successful in the synthesis of 5 fluorouracil and its pyrimidine relatives, an extensive subject that will be discussed in another section Selective fluonnation of enolates [47], enols [48], and silyl enol ethers [49] resulted in preparation of a/phn-fluoro ketones, fieto-diketones, heta-ketoesters, and aldehydes The reactions of fluorine with these functionalities is most probably an addition to the ene followed by elimination of fluonde ion or hydrogen fluoride rather than a simple substitution In a similar vein, selective fluonnation of pyridmes to give 2-fluoropyridines was shown to proceed through pyridine difluondes [50]... [Pg.109]

In 2004, ruthenium-catalysed asymmetric cyclopropanations of styrene derivatives with diazoesters were also performed by Masson et al., using chiral 2,6-bis(thiazolines)pyridines. These ligands were prepared from dithioesters and commercially available enantiopure 2-aminoalcohols. When the cyclopropanation of styrene with diazoethylacetate was performed with these ligands in the presence of ruthenium, enantioselectivities of up to 85% ee were obtained (Scheme 6.6). The scope of this methodology was extended to various styrene derivatives and to isopropyl diazomethylphosphonate with good yields and enantioselectivities. The comparative evaluation of enantiocontrol for cyclopropanation of styrene with chiral ruthenium-bis(oxazolines), Ru-Pybox, and chiral ruthenium-bis(thiazolines), Ru-thia-Pybox, have shown many similarities with, in some cases, good enantiomeric excesses. The modification... [Pg.213]

In recent years, a variety of aryl boronic acids are commercially available, albeit in some cases they may be expensive for large scale purposes. During our work in the mid-1990 s boronic acid (II) was not commercially available and so two different protocols were used to prepare this acid. The first approach involved the transmetallation with n-butyl lithium of aryl bromide (I) and trapping the lithio species generated with trialkyl borate followed by an acid quench. Aryl bromide (I) is easily prepared by reaction of o-bromobenzenesulfonyl chloride with 2-propanol in the presence of pyridine as a base. The second approach was a directed metallation of isopropyl ester of benzene sulfonic acid (VII), to generate the same lithio species and reaction with trialkyl borate. The sulfonyl ester is prepared by reaction of 2-propanol with benzenesulfonyl chloride. From a long-term strategy the latter approach is... [Pg.218]

This complex, formerly called pyridine perchromate and now finding application as a powerful and selective oxidant, is violently explosive when dry [1], Use while moist on the day of preparation and destroy any surplus with dilute alkali [2], Preparation and use of the reagent have been detailed further [3], The analogous complexes with aniline, piperidine and quinoline may be similarly hazardous [4], The damage caused by a 1 g sample of the pyridine complex exploding during desiccation on a warm day was extensive. Desiccation of the aniline complex had to be at ice temperature to avoid violent explosion [4]. Pyridinium chlorochromate is commercially available as a safer alternative oxidant of alcohols to aldehydes [5], See Chromium trioxide Pyridine Dipyridinium dichromate See Other AMMINECHROMIUM PEROXOCOMPLEXES... [Pg.1076]

The three-dimensional X-ray structure of the enzyme [19] reveals that several Thr residues occur in both the NADH cofactor and substrate binding sites (Fig. 21.5 A see p. 463). A Met residue (Metl7) is also present at the interface between the cofactor NADH and a substrate analog pyridine-2,6-dicarboxylate (PDC) (Fig. 21.5 A). Therefore, we prepared a sample of DHPR that was selectively labeled in these amino acid residues as follows 13C /1H Met, 13C /1H lie, 13C/1H Thr and uniformly 2H-labeled elsewhere ([MIT]-DHPR). This labeling can be achieved by supplementing the media with appropriate commercially available labeled amino acids, 12C/2H-labeled glucose and DzO [20] (see also the caption to Fig. 21.5 for details). [Pg.464]

It seems reasonable that polyester cyclics could be prepared by an extension of the /wendo-high-dilution [17] chemistry used for the preparation of cyclic carbonate oligomers [18, 19] however, such proved not to be the case. Brunelle et al. showed that the reaction of terephthaloyl chloride (TPC) with diols such as 1,4-butanediol did not occur quickly enough to prevent concentration of acid chlorides from building up during condensation [14]. Even slow addition of equimolar amounts of TPC and butanediol to an amine base (triethylamine, pyridine or dimethylaminopyridine) under anhydrous conditions did not form cyclic oligomers. (The products were identified by comparison to authentic materials isolated from commercial PBT by the method of Wick and Zeitler [9].)... [Pg.120]

Ethyl 3-oxoalkanoates when not commercially available can be prepared by the acylation of tert-butyl ethyl malonate with an appropriate acid chloride by way of the magnesium enolate derivative. Hydrolysis and decarboxylation in acid solution yields the desired 3-oxo esters [59]. 3-Keto esters can also be prepared in excellent yields either from 2-alkanone by condensation with ethyl chloroformate by means of lithium diisopropylamide (LDA) [60] or from ethyl hydrogen malonate and alkanoyl chloride usingbutyllithium [61]. Alternatively P-keto esters have also been prepared by the alcoholysis of 5-acylated Mel-drum s acid (2,2-dimethyl-l,3-dioxane-4,6-dione). The latter are prepared in almost quantitative yield by the condensation of Meldrum s acid either with an appropriate fatty acid in the presence of DCCI and DMAP [62] or with an acid chloride in the presence of pyridine [62] (Scheme 7). [Pg.306]

Skraup synthesis org chem A method for the preparation of commercial synthetic quinoline by heating aniline and glycerol in the presence of sulfuric acid and an oxidizing agent to form pyridine unsubstituted quinolines. skraup sin-tha-sas slaked lime See calcium hydroxide. slakt iTm )... [Pg.341]


See other pages where Pyridine commercial preparation is mentioned: [Pg.303]    [Pg.377]    [Pg.174]    [Pg.251]    [Pg.534]    [Pg.160]    [Pg.38]    [Pg.192]    [Pg.151]    [Pg.438]    [Pg.175]    [Pg.72]    [Pg.183]    [Pg.46]    [Pg.526]    [Pg.186]    [Pg.350]    [Pg.484]    [Pg.111]    [Pg.193]    [Pg.83]    [Pg.53]    [Pg.44]    [Pg.119]    [Pg.177]    [Pg.350]    [Pg.44]    [Pg.376]    [Pg.221]    [Pg.160]    [Pg.465]    [Pg.469]    [Pg.504]    [Pg.285]   
See also in sourсe #XX -- [ Pg.399 ]




SEARCH



Commercial preparations

Commercially prepared

Pyridines, preparation

© 2024 chempedia.info