Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Purines adenylate kinase

In the preceding sections the conversion of purines and purine nucleosides to purine nucleoside monophosphates has been discussed. The monophosphates of adenosine and guanosine must be converted to their di- and triphosphates for polymerization to RNA, for reduction to 2 -deoxyribonucleoside diphosphates, and for the many other reactions in which they take part. Adenosine triphosphate is produced by oxidative phosphorylation and by transfer of phosphate from 1,3-diphosphoglycerate and phosphopyruvate to adenosine diphosphate. A series of transphosphorylations distributes phosphate from adenosine triphosphate to all of the other nucleotides. Two classes of enzymes, termed nucleoside mono-phosphokinases and nucleoside diphosphokinases, catalyse the formation of the nucleoside di- and triphosphates by the transfer of the terminal phosphoryl group from adenosine triphosphate. Muscle adenylate kinase (myokinase)... [Pg.80]

Didanosine is a synthetic purine nucleoside analog that inhibits the activity of reverse transcriptase in HIV-1, HIV-2, other retroviruses and zidovudine-resistant strains. A nucleobase carrier helps transport it into the cell where it needs to be phosphorylated by 5 -nucleoiidase and inosine 5 -monophosphate phosphotransferase to didanosine S -monophosphate. Adenylosuccinate synthetase and adenylosuccinate lyase then convert didanosine 5 -monophosphate to dideoxyadenosine S -monophosphate, followed by its conversion to diphosphate by adenylate kinase and phosphoribosyl pyrophosphate synthetase, which is then phosphorylated by creatine kinase and phosphoribosyl pyrophosphate synthetase to dideoxyadenosine S -triphosphate, the active reverse transcriptase inhibitor. Dideoxyadenosine triphosphate inhibits the activity of HIV reverse transcriptase by competing with the natural substrate, deoxyadenosine triphosphate, and its incorporation into viral DNA causes termination of viral DNA chain elongation. It is 10-100-fold less potent than zidovudine in its antiviral activity, but is more active than zidovudine in nondividing and quiescent cells. At clinically relevant doses, it is not toxic to hematopoietic precursor cells or lymphocytes, and the resistance to the drug results from site-directed mutagenesis at codons 65 and 74 of viral reverse transcriptase. [Pg.178]

A similar reaction is catalyzed by adenylate kinase (see here also). The guanylate kinase-catalyzed reaction is part of de novo purine biosynthesis and can occur as part of purine salvage synthesis as well. [Pg.299]

At very low values of EC, when AMP is elevated it is deaminated via AMP deaminase to inosine monophosphate (IMP). This further displaces the adenylate kinase reaction in the direction of ATP synthesis. The IMP is dephosphorylated by nucleotide phosphatase, and the inosine is phosphorylyzed via purine nucleotide phosphorylase, releasing hypoxanthine and ribose 1-phosphate. The latter is metabolized via the pentose phosphate pathway, and most of the carbon atoms enter glycolysis. Because this course of events depletes the overall adenine nucleotide pool, and hence the scope for ATP production in the longer term, it represents a metabolic last ditch stand by the cell to extract energy even from the energy currency itself ... [Pg.421]

Some very interesting differences can exist between an enzyme in cancerous tissue and the analogous enzyme in normal tissues. For instance, the specific activity of purine phosphoribosyl transferase in mouse tumour cells (Ehrlich ascites) had between 15 and 60 times the activity of that in liver, brain, spleen, heart, or kidneys of the same animal (Murray, 1966). Again, the adenylate kinase of a rat hepatoma was 22 times more strongly inhibited than the analogous enzyme from healthy rat muscle using an ATP analogue P P -his-[8- (ethylthio) adenosine-5 -]pentaphosphate (Kappler et at., 1982). [Pg.151]

Adenosine (deoxyadenosine) is metabolized by erythrocytes (RBC) to either adenylates via adenylate kinase (AK) or to inosine by adenosine deaminase (ADA). Inosine, guanosine and their deoxy forms are converted to the purine base hypoxanthine by purine nucleoside phosphorylase (PNP). [Pg.359]

Bios5mthetic pathways of naturally occurring cytokinins are illustrated in Fig. 29.5. The first step of cytokinin biosynthesis is the formation of A -(A -isopentenyl) adenine nucleotides catalyzed by adenylate isopentenyltransferase (EC 2.5.1.27). In higher plants, A -(A -isopentenyl)adenine riboside 5 -triphosphate or A -(A -isopentenyl)adenine riboside 5 -diphosphate are formed preferentially. In Arabidopsis, A -(A -isopentenyl)adenine nucleotides are converted into fraws-zeatin nucleotides by cytochrome P450 monooxygenases. Bioactive cytokinins are base forms. Cytokinin nucleotides are converted to nucleobases by 5 -nucleotidase and nucleosidase as shown in the conventional purine nucleotide catabolism pathway. However, a novel enzyme, cytokinin nucleoside 5 -monophosphate phosphoribo-hydrolase, named LOG, has recently been identified. Therefore, it is likely that at least two pathways convert inactive nucleotide forms of cytokinin to the active freebase forms that occur in plants [27, 42]. The reverse reactions, the conversion of the active to inactive structures, seem to be catalyzed by adenine phosphoiibosyl-transferase [43] and/or adenosine kinase [44]. In addition, biosynthesis of c/s-zeatin from tRNAs in plants has been demonstrated using Arabidopsis mutants with defective tRNA isopentenyltransferases [45]. [Pg.963]


See other pages where Purines adenylate kinase is mentioned: [Pg.140]    [Pg.125]    [Pg.117]    [Pg.15]    [Pg.342]    [Pg.96]    [Pg.366]    [Pg.386]    [Pg.119]   
See also in sourсe #XX -- [ Pg.333 , Pg.334 ]




SEARCH



Adenylate

Adenylate kinase

Adenylation

Adenylic kinase

Kinases adenylate kinase

© 2024 chempedia.info