Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protonic acid sites zeolite catalysis

Zeolites exhibit a considerably lower proton (acid site) concentration than liquid acids. For example, 1 g of H2SO4 contains 20 X 10-3 moles of protons, whereas 1 g of zeolite HY, with a Si/Al atomic ratio of five, contain no more than 3 X 10-3 moles of protons. (Note that this is a cmde approximation of the acidic sites available for catalysis, because it assumes that with both materials all protons are available and catalytically active.) Moreover, 1 g of H2SO4 occupies far less volume (i.e., 0.5 cm3) than the equivalent mass of zeolite (4-6 cm3). [Pg.278]

The rich variety of active sites that can be present in zeolites (i) protonic acidic sites, which catalyze acid reactions (ii) Lewis-acid sites, which often act in association with basic sites (acid-base catalysis) (iii) basic sites (iv) redox sites, incorporated either in the zeolite framework (e.g., Ti of titanosHicates) or in the channels or cages (e.g., Pt clusters, metal complexes). Moreover, redox and acidic or basic sites can act in a concerted way for catalyzing bifunctional processes. [Pg.232]

The acid strength of protons in the crystalline molecular sieve structure plays a key role in of MTO catalysis. The acid sites of silicoalumina-based zeolites... [Pg.524]

Cince the catalytic activity of synthetic zeolites was first revealed (1, 2), catalytic properties of zeolites have received increasing attention. The role of zeolites as catalysts, together with their catalytic polyfunctionality, results from specific properties of the individual catalytic reaction and of the individual zeolite. These circumstances as well as the different experimental conditions under which they have been studied make it difficult to generalize on the experimental data from zeolite catalysis. As new data have accumulated, new theories about the nature of the catalytic activity of zeolites have evolved (8-9). The most common theories correlate zeolite catalytic activity with their proton-donating and electron-deficient functions. As proton-donating sites or Bronsted acid sites one considers hydroxyl groups of decationized zeolites these are formed by direct substitution of part of the cations for protons on decomposition of NH4+ cations or as a result of hydrolysis after substitution of alkali cations for rare earth cations. As electron-deficient sites or Lewis acid sites one considers usually three-coordinated aluminum atoms, formed as a result of dehydroxylation of H-zeolites by calcination (8,10-13). [Pg.242]

If the charge balancing cation in a zeolite is then the material is a solid acid that can reveal shape selective properties due to the confinement of the acidic proton within the zeolite pore architecture. An example of shape selective acid catalysis is provided in Figure 5.3.7. In this case, normal butanol and isobutanol were dehydrated over CaX and CaA zeolites that contained protons in the pore structure. Both the primary and secondary alcohols were dehydrated on the X zeolite whereas only the primary one reacted on the A zeolite. Since the secondary alcohol is too large to diffuse through the pores of CaA, it cannot reach the active sites within the CaA crystals. [Pg.169]

The distribution of isomers formed as a result of this reaction tends to be higher in OX at the expense of PX, so catalysis through this route is less desirable from an industrial perspective. Comparisons of the monomolecular versus bimolecular reaction have been made, providing insight into the properties of zeolitic catalysts that favor one route over the other [64, 65]. Mechanistic aspects in MOR and TON structure zeolites have been evaluated using ah initio calculations, which suggest that the initiation step involves a defect site rather than an acidic proton [66]. It is... [Pg.491]

The incorporation of Al atoms into the framework of zeolites occurs in a tetrahedral oxygen coordination and leads to negative framework charges. These framework charges are compensated by protons in acidic hydroxyl groups or by extra-framework cations such as Li , Na, Cs", Mg ", etc. Accordingly, these surface sites are responsible for the chemical behavior of zeolites in separation processes and in catalysis (199,200). [Pg.188]

Theory helps the experimentalists in many ways this volume is on chemical shift calculations, but the other ways in which theoretical chemistry guides NMR studies of catalysis should not be overlooked. Indeed, further theoretical work on two of the cations discussed above has helped us understand why some carbenium ions persist indefinitely in zeolite solid acids as stable species at 298 K, and others do not (25). The three classes of carbenium ions we were most concerned with, the indanyl cation, the dimethylcyclopentenyl cation, and the pentamethylbenzenium cation (Scheme 1), could all be formally generated by protonation of an olefin. We actually synthesized them in the zeolites by other routes, but we suspected that the simplest parent olefins" of these cations must be very basic hydrocarbons, otherwise the carbenium ions might just transfer protons back to the conjugate base site on the zeolite. Experimental values were not available for any of the parent olefins shown below, so we calculated the proton affinities (enthalpies) by first determining the... [Pg.75]

We conclude that there is no evidence for WZ catalysts having superacidic properties or sites with the acidic character that would be necessary for initiation of catalysis by alkane protonation. In as much as WZ catalysts are some four orders of magnitude more active than zeolites for alkane isomerization,26 it is clear that there is no one-to-one correlation between acid strength of WZ and its catalytic activity. We therefore infer that although the acidity of WZ catalysts is important in alkane conversion catalysis, the reaction is most likely initiated by a reaction other than protonation of the alkane by the catalyst or a species formed from it. [Pg.352]

Noble metal zeolite catalysts are used in various processes, most of them occurring through bifunctional hydrogenating/acid catalysis. One exception, however, is the selective aromatization of n-alkanes (e.g. n-hexane into benzene) proceeding through monofunctional metal catalysis. Indeed the PtLTL catalyst used commercially does not present any protonic sites. [Pg.14]


See other pages where Protonic acid sites zeolite catalysis is mentioned: [Pg.235]    [Pg.167]    [Pg.368]    [Pg.3]    [Pg.164]    [Pg.201]    [Pg.211]    [Pg.403]    [Pg.551]    [Pg.474]    [Pg.16]    [Pg.408]    [Pg.56]    [Pg.97]    [Pg.4539]    [Pg.176]    [Pg.413]    [Pg.808]    [Pg.3]    [Pg.212]    [Pg.551]    [Pg.48]    [Pg.4538]    [Pg.77]    [Pg.71]    [Pg.8]    [Pg.11]    [Pg.174]    [Pg.320]    [Pg.580]    [Pg.132]    [Pg.161]    [Pg.291]    [Pg.295]    [Pg.162]    [Pg.709]    [Pg.235]    [Pg.12]    [Pg.154]    [Pg.188]   
See also in sourсe #XX -- [ Pg.235 ]




SEARCH



Acid catalysis zeolites

Acid zeolites

Acidic catalysis, zeolites

Acidic site

Acids protonic

Proton acid catalysis

Proton acids

Proton catalysis

Protonated zeolite

Protonation site

Protonic acid sites

Protonic sites

Protons sites

Protons, zeolitic

Zeolites acid sites

Zeolites acidity

Zeolites protonation

Zeolitic acids

© 2024 chempedia.info