Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protonation of the

MarkownikofT s rule The rule states that in the addition of hydrogen halides to an ethyl-enic double bond, the halogen attaches itself to the carbon atom united to the smaller number of hydrogen atoms. The rule may generally be relied on to predict the major product of such an addition and may be easily understood by considering the relative stabilities of the alternative carbenium ions produced by protonation of the alkene in some cases some of the alternative compound is formed. The rule usually breaks down for hydrogen bromide addition reactions if traces of peroxides are present (anti-MarkownikofT addition). [Pg.251]

Figure Bl.16.12. Experimental kineties of the CIDNP net eflfeet (A) for the aldehyde proton of the produets II and in of primary biradieal ( ) for the CH CHCOH) protons of the produets IV, V, and VI of seeondary... Figure Bl.16.12. Experimental kineties of the CIDNP net eflfeet (A) for the aldehyde proton of the produets II and in of primary biradieal ( ) for the CH CHCOH) protons of the produets IV, V, and VI of seeondary...
Figure Bl.16.13. Kineties of the CIDNP multiplet effeet (frill eurve) the ealeulated CIDNP kineties for the produet of disproportionation of bis-ketyl biradieal (O) experimental kineties for the CH CHCOH) protons of the produets IV, V and VI of the seeondary biradieal. Reprinted from [28]. Figure Bl.16.13. Kineties of the CIDNP multiplet effeet (frill eurve) the ealeulated CIDNP kineties for the produet of disproportionation of bis-ketyl biradieal (O) experimental kineties for the CH CHCOH) protons of the produets IV, V and VI of the seeondary biradieal. Reprinted from [28].
The mechanism of the formation of these three compounds is based on the initial reaction between ethanol and a strong acid such as sulphuric acid, which involves protonation of the ethanolic oxygen to form the ion (1). [Pg.77]

It is obvious that the reaction is accelerated markedly by water. However, for the first time, the Diels-Alder reaction is not fastest in water, but in 2,2,2-trifiuoroethanol (TFE). This might well be a result of the high Bronsted acidity of this solvent. Indirect evidence comes from the pH-dependence of the rate of reaction in water (Figure 2.1). Protonation of the pyridyl nitrogen obviously accelerates the reaction. [Pg.52]

A quantitative correlation between rate and equilibrium constants for the different metal ions is absent. The observed rate enhancements are a result of catalysis by the metal ions and are clearly not a result of protonation of the pyridyl group, since the pH s of all solutions were within the region where the rate constant is independent of the pH (Figure 2.1). [Pg.59]

Halonium ions, including hydrido or alkylhalonium ions, are similarly protolytically activated, indicative of protonation of the non-bonded electron pairs of their halogen atoms. [Pg.197]

Without further studies little weight can be given to these ideas. In particular there is the possibility that with acetanilide, as with anisole, nitrosation is of some importance, and further with nitrations in sulphuric acid the effect of protonation of the substrate needs quantitative evaluation. The possibility that the latter factor may be important has been recognised, and it may account for the difference between nitration in sulphuric acid and nitration with nitronium tetrafluoroborate. [Pg.96]

In a later paper Knowles and Norman compared more fully nitrations of benzylic compounds in acetyl nitrate and in mixed acid (table 5.9), and interpreted the results in terms of three factors nitronium ion nitration in both media some degree of protonation of the oxygen... [Pg.101]

The argtiments of Norman and his co-workers seem to give affirmative answers to the first and second of these questions, but it is doubtful if the available data further require such an answer for the third question. It can be argued that the crucial comparison made between the behaviour of benzyltrimethylammonium ion and protonated benzyl methyl ether is invalid, and that it is possible to interpret the results in terms of nitration by the nitronium ion, modified by protonation of the oxygen atom of the ether a case for the possible involvement of the nitro-nium ion in specific interaction leading to o-substitution has been made. ... [Pg.103]

A mild procedure which does not involve strong adds, has to be used in the synthesis of pure isomers of unsymmetrically substituted porphyrins from dipyrromethanes. The best procedure having been applied, e.g. in unequivocal syntheses of uroporphyrins II, III, and IV (see p. 251f.), is the condensation of 5,5 -diformyldipyrromethanes with 5,5 -unsubstituted dipyrromethanes in a very dilute solution of hydriodic add in acetic acid (A.H. Jackson, 1973). The electron-withdrawing formyl groups disfavor protonation of the pyrrole and therefore isomerization. The porphodimethene that is formed during short reaction times isomerizes only very slowly, since the pyrrole units are part of a dipyrromethene chromophore (see below). Furthermore, it can be oxidized immediately after its synthesis to give stable porphyrins. [Pg.255]

The thioboration of terminal alkynes with 9-(alkylthio)-9-borabicyclo[3.3.1]-nonanes (9-RS-9-BBN) proceeds regio- and stereoselectively by catalysis of Pd(Ph,P)4 to produce the 9-[(Z)-2-(alkylthio)-l-alkeny)]-9-BBN derivative 667 in high yields. The protonation of the product 667 with MeOH affords the Markownikov adduct 668 of thiol to 1-alkyne. One-pot synthesis of alkenyl sulfide derivatives 669 via the Pd-catalyzed thioboration-cross-coupling sequence is also possible. Another preparative method for alkenyl sulfides is the Pd-catalyzed cross-coupling of 9-alkyl-9-BBN with l-bromo-l-phe-nylthioethene or 2-bromo-l-phenylthio-l-alkene[534]. [Pg.225]

The olefinic proton of the enol form emerges as a sharp singlet in the region 6.2 to 7.5 ppm (DMSO) (386). while the 5-methyl protons appear at approximately 2.2 ppm. [Pg.422]

A sufficient concentration of base B is necessary for the removal of a proton of the CH, group. In a first step, the equilibrium in Scheme 20 results, in which the monomeric anhydrobase Bi constitutes the conjugated base of the quaternary salt A,. As has been shown for other rings (24). the equilibrium depends upon the concentration of the different species and the relative strength of the bases B and Bj, and depends also upon the nature of X. [Pg.37]

TABLE 1-33 CHEMICAL SHIFTS OF PROTONS OF THE SUBSTITUENTS IN SUBSTITUTED THIAZOLE (235)... [Pg.72]

By protodetritiation of the thiazolium salt (152) and of 2 tritiothiamine (153) Kemp and O Brien (432) measured a kinetic isotope effect, of 2.7 for (152). They evaluated the rate of protonation of the corresponding yiides and found that the enzyme-mediated reaction of thiamine with pyruvate is at least 10 times faster than the maximum rate possible with 152. The scale of this rate ratio establishes the presence within the enzyme of a higher concentration of thiamine ylide than can be realized in water. Thus a major role of the enzyme might be to change the relative thermodynamic stabilities of thiamine and its ylide (432). [Pg.118]

The protonation of the nitrogen atom of thiazole induces a large increase in reactivity of the 2-position (193, 194). This is in contrast to the pyridine series, where the reactivity of both positions adjacent to the nitrogen atom are enhanced (194). The phenylation of conjugate acid of 5-alkylthiazoles may then be considered as a preparative route to alkyl-thiazoles. The results (isomer percent and overall reactivity) are indicated in Tables III-31 (196) and 01-32 (196). [Pg.368]

In the case of alkyl radicals [e.g., methyl radical (197, 198) and cyclohexyl radical (198)], their nucleophilic behaviour enhances the reactivity of the 2-position. Here it is necessary to have full protonation of the nitrogen atom and to use specific solvents and radical sources. [Pg.369]

Deuterium oxide (D2O) is water in which the protons ( H) have been replaced by their heav ler isotope deuterium ( H) It is readily available and is used in a vanety of mechanistic studies in organic chemistry and biochemistry When D2O is added to an alcohol (ROH) deuterium replaces the proton of the hydroxyl group... [Pg.186]

Addition begins m the usual way by protonation of the double bond to give m this case a secondary carbocation This carbocation can be captured by chloride to give 2 chloro 3 methylbutane (40%) or it can rearrange by way of a hydride shift to give a tertiary carbocation The tertiary carbocation reacts with chloride ion to give 2 chloro 2 methylbutane (60%)... [Pg.241]

Step 1 Protonation of the carbon-carbon double bond in the direction that leads to the more stable carbocation... [Pg.246]

The two dimers of (CH3)2C=CH2 are formed by the mechanism shown m Figure 6 16 In step 1 protonation of the double bond generates a small amount of tert butyl cation m equilibrium with the alkene The carbocation is an electrophile and attacks a second molecule of 2 methylpropene m step 2 forming a new carbon-carbon bond and generating a carbocation This new carbocation loses a proton m step 3 to form a mixture of 2 4 4 tnmethyl 1 pentene and 2 4 4 tnmethyl 2 pentene... [Pg.266]

Protonation of the double bond occurs in the direction that gives the more stable of two possible carbocations... [Pg.272]

Alkyl sulfonates are derivatives of sulfonic acids m which the proton of the hydroxyl group is replaced by an alkyl group They are prepared by treating an alcohol with the appropriate sulfonyl chloride usually m the presence of pyridine... [Pg.351]

The first step protonation of the double bond of the enol is analogous to the pro tonation of the double bond of an alkene It takes place more readily however because the carbocation formed m this step is stabilized by resonance involving delocalization of a lone pair of oxygen... [Pg.379]

Only the benzylic chloride is formed because protonation of the double bond occurs m the direction that gives a carbocation that is both secondary and benzylic... [Pg.447]

The NMR spectrum of isopropyl chloride (Figure 13 17) illustrates the appearance of an isopropyl group The signal for the six equivalent methyl protons at 8 1 5 is split into a doublet by the proton of the H—C—Cl unit In turn the H—C—Cl proton signal at 8 4 2 IS split into a septet by the six methyl protons A doublet-septet pattern is char acteristic of an isopropyl group... [Pg.540]


See other pages where Protonation of the is mentioned: [Pg.232]    [Pg.95]    [Pg.61]    [Pg.84]    [Pg.93]    [Pg.146]    [Pg.151]    [Pg.191]    [Pg.112]    [Pg.282]    [Pg.322]    [Pg.93]    [Pg.148]    [Pg.149]    [Pg.238]    [Pg.239]    [Pg.240]    [Pg.262]    [Pg.532]    [Pg.538]    [Pg.539]    [Pg.542]   


SEARCH



The Proton

© 2024 chempedia.info