Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protein interactions, ionic polysaccharide

The ability of PO to interact with the acetyl residues of chitin allows us to compare them with monovalent lectins (i.e. extensins) which when binding with hemicellulose are only affected in a medium with a high ionic strength (Brownleader et al., 2006). As a rule, POs are bound with the plant cell wall and act as its modifiers. Some POs can form complexes with an extensin of cell walls (Brownleader et al., 2006). Consequently, chitin-specific sites that are capable of interacting with polysaccharides exist in the molecules of PO, and these sites can resemble the membrane receptor binding sites or else be similar to the domains of heparinbinding proteins (Kim et al., 2001). [Pg.212]

Hydrogen bonds and ionic, hydrophobic (Greek, water-fearing ), and van der Waals interactions are individually weak, but collectively they have a very significant influence on the three-dimensional structures of proteins, nucleic acids, polysaccharides, and membrane lipids. [Pg.47]

These interactions are frequently ionic in character. The coulombic forces of interaction between macroions and lower molecular weight ionic species are central to the life processes of the cell. For example, intermolecular interactions of nucleic acids with proteins and small ions, of proteins with anionic lipids and surfactants and with the ionic substrates of enzyme catalyzed reactions, and of ionic polysaccharides with a variety of inorganic cations are all improtant natural processes. Intramolecular coulombic interactions are also important for determining the shape and stability of biopolymer structures, the biological function of which frequently depends intimately on the conformational features of the molecule. [Pg.14]

Electrostatic forces are the main ways of interaction between the protein molecule and the ionic polysaccharide. Parameters such as pH, ionic strength, concentration and proportion of the molecules, fillers, and structure and size of the components of the... [Pg.90]

The electrostatic interaction between oppositely charged protein and polysaccharide can be utilized for encapsulation and delivery of hydro-phobic nutraceuticals. As a result of this interaction, we may have either complex coacervation (and precipitation) or soluble complex formation, depending on various factors, such as the type of polysaccharide used (anionic/cationic), the solution pH, the ionic strength, and the ratio of polysaccharide to protein (see sections 2.1, 2.2 and 2.5 in chapter seven for more details) (Schmitt et al, 1998 de Kruif et al., 2004 Livney, 2008 McClements et al, 2008, 2009). The phenomenon of complex... [Pg.64]

Thermodynamically unfavourable interactions between two biopolymers may produce a significant increase in the surface shear viscosity (rf) of the adsorbed protein layer. This change in surface rheological behaviour is a consequence of the greater surface concentration of adsorbed protein. For instance, with p-casein + pectin at pH = 5.5 and ionic strength = 0.01 M (Ay = 2.6 x 10 m3 mol kg-2), the surface shear viscosity at the oil-water interface was found to increase by 20-30%, i.e., rp = 750 75 and 590 60 mN s m-1 in the presence and absence of polysaccharide. These values of rp refer to data taken some 24 hours following initial protein layer formation (Dickinson et al., 1998 Semenova et al., 1999a). [Pg.245]

Figure 7.15 Effect of thermodynamically favourable interactions between biopolymers on protein surface activity at the planar oil-water or air-water interface. The surface pressure n reached after 6 hours is plotted against the polysaccharide concentration ( ), legumin (0.001 wt%) + dextran (Mw = 270 kDa) at / -decane-water surface at pH = 7.8 and ionic strength = 0.01 M, (Ay = -0.2 x 105 cm3 mol1) (Pavlovskaya et ah, 1993) ( ), legumin (0.001 wt%) + maltodextrin (MD6, Mw = 102 kDa) at air-water surface at pH = 7.2 and ionic strength = 0.05 M (Ay = - 0.02 x 105 cm3 mol-1) (Belyakova et ah, 1999) (A), legumin (0.001 wt%) + maltodextrin (MD10, Mw = 45 kDa) at air-water surface at pH = 7.2 and ionic strength = 0.05 M (.1 / = - 0.08 x 105 cm3 mol-1) (Belyakova et ah, 1999). Figure 7.15 Effect of thermodynamically favourable interactions between biopolymers on protein surface activity at the planar oil-water or air-water interface. The surface pressure n reached after 6 hours is plotted against the polysaccharide concentration ( ), legumin (0.001 wt%) + dextran (Mw = 270 kDa) at / -decane-water surface at pH = 7.8 and ionic strength = 0.01 M, (Ay = -0.2 x 105 cm3 mol1) (Pavlovskaya et ah, 1993) ( ), legumin (0.001 wt%) + maltodextrin (MD6, Mw = 102 kDa) at air-water surface at pH = 7.2 and ionic strength = 0.05 M (Ay = - 0.02 x 105 cm3 mol-1) (Belyakova et ah, 1999) (A), legumin (0.001 wt%) + maltodextrin (MD10, Mw = 45 kDa) at air-water surface at pH = 7.2 and ionic strength = 0.05 M (.1 / = - 0.08 x 105 cm3 mol-1) (Belyakova et ah, 1999).
Surface shear rheology at the oil-water interface is a sensitive probe of protein-polysaccharide interactions. In particular, there is considerable experimental evidence for a general increase in surface shear viscosity of protein adsorbed layers as a result of interfacial complexation with polysaccharides (Dickinson et al., 1998 Dickinson and Euston, 1991 Dickinson and Galazka, 1992 Semenova et al., 1999a Jourdain et al., 2009). One such example is the case of asi-casein + pectin at pH = 5.5 and ionic strength = 0.01 M (Ay = - 334 x 10 cm /mol) the interfacial viscosity after 24 hours was found to be five times larger in the presence of pectin (i.e., values of 820 80 and 160 20 mN m 1 with and without pectin, respectively) (Semenova et al., 1999a). [Pg.271]

Figure 8.12 illustrates the effect of complex formation between protein and polysaccharide on the time-dependent surface shear viscosity at the oil-water interface for the system BSA + dextran sulfate (DS) at pH = 7 and ionic strength = 50 mM. The film adsorbed from the 10 wt % solution of pure protein has a surface viscosity of t]s > 200 mPa s after 24 h. As the polysaccharide is not itself surface-active, it exhibited no measurable surface viscosity (t]s < 1 niPa s). But, when 10 wt% DS was introduced into the aqueous phase below the 24-hour-old BSA film, the surface viscosity showed an increase (after a further 24 h) to a value around twice that for the original protein film. Hence, in this case, the new protein-polysaccharide interactions induced at the oil-water interface were sufficiently strong to influence considerably the viscoelastic properties of the adsorbed biopolymer layer. [Pg.337]


See other pages where Protein interactions, ionic polysaccharide is mentioned: [Pg.305]    [Pg.336]    [Pg.901]    [Pg.217]    [Pg.143]    [Pg.261]    [Pg.217]    [Pg.509]    [Pg.591]    [Pg.492]    [Pg.559]    [Pg.195]    [Pg.571]    [Pg.336]    [Pg.224]    [Pg.264]    [Pg.194]    [Pg.106]    [Pg.224]    [Pg.10]    [Pg.104]    [Pg.203]    [Pg.304]    [Pg.161]    [Pg.565]    [Pg.133]    [Pg.9]    [Pg.49]    [Pg.88]    [Pg.95]    [Pg.107]    [Pg.232]    [Pg.258]    [Pg.266]    [Pg.293]    [Pg.11]    [Pg.148]    [Pg.622]    [Pg.155]    [Pg.127]    [Pg.493]   
See also in sourсe #XX -- [ Pg.336 ]




SEARCH



Ionic interactions

Ionic polysaccharides

Ionic protein interactions

Protein polysaccharide

Protein-polysaccharide interactions

© 2024 chempedia.info