Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thioacetals protection

RSSiMe3 [R = Me, Et, (-CH2-)3], Zn, Et20, 0-25°, 70-95% yield. This method is satisfactory for a variety of aldehydes and ketones and is also suitable for the preparation of 1,3-dithianes. Methacrolein gives the product of Michael addition rather than the thioacetal. The less hindered of two ketones is readily protected using this methodology. ... [Pg.198]

HS(CH2) SH, CICH2CH2CI, TeCl4, rt, 80-99% yield."" This method is also effective for converting dimethyl acetals to the thioacetal and for selectively protecting an aldehyde in the presence of a ketone. [Pg.335]

Carbonyl compounds react with thiols, RSH, to form hemi-thioacetals and thioacetals, rather more readily than with ROH this reflects the greater nucleophilicity of sulphur compared with similarly situated oxygen. Thioacetals offer, with acetals, differential protection for the C=0 group as they are relatively stable to dilute acid they may, however, be decomposed readily by H20/HgCl2/CdC03. It is possible, using a thioacetal, to reverse the polarity of the carbonyl carbon atom in an aldehyde thereby converting this initially electrophilic centre into a nucleophilic one in the anion (31) ... [Pg.211]

A recent total synthesis of tubulysin U and V makes use of a one-pot, three-component reaction to form 2-acyloxymethylthiazoles <06AG(E)7235>. Treatment of isonitrile 25, Boc-protected Z-homovaline aldehyde 26, and thioacetic acid with boron trifluoride etherate gives a 3 1 mixture of two diastereomers 30. The reaction pathway involves transacylation of the initial adduct 27 to give thioamide 28. This amide is in equilibrium with its mercaptoimine tautomer 29, which undergoes intramolecular Michael addition followed by elimination of dimethylamine to afford thiazole 30. The major diastereomer serves as an intermediate in the synthesis of tubulysin U and V. [Pg.244]

Photosensitive protecting groups discussed here belong to three different classes cyclic acetals, thioacetals, and hydrazones. [Pg.195]

As a consequence, thiols are preferred to alcohols for the protection of aldehyde and ketone groups in synthetic procedures. Thioacetals and thioketals are... [Pg.235]

In addition, iodine snccessfnlly catalyzed the electrophilic snbstitntion reaction of indoles with aldehydes and ketones to bis(indonyl)methanes [225], the deprotection of aromatic acetates [226], esterifications [227], transesterifications [227], the chemoselective thioacetalization of carbon functions [228], the addition of mercaptans to a,P-nnsatnrated carboxylic acids [229], the imino-Diels-Alder reaction [230], the synthesis of iV-Boc protected amines [231], the preparation of alkynyl sngars from D-glycals [232], the preparation of methyl bisnlfate [233], and the synthesis of P-acetamido ketones from aromatic aldehydes, enolizable ketones or ketoesters and acetonitrile [234],... [Pg.388]

These problems were circumvented by protecting the C(4),C(5) diol prior to Wittig olefination step (Figure 3). Thus, treatment of 10b (a mixture of pyranose and furanose anomers prepared by hydrolysis of 8 with aqueous trifluoroacetic acid) with excess EtSH and concentrated HCI (as solvent) at provided dithioacetal 9 in 50% yield, along with 25% of a mixture of thiopyranosides and thiofuranosides that was recycled to 10b in high yield by treatment with HgCIa and CaCOa in aqueous CH3CN. Finally, the diol unit was protected as a cyclohexylidene ketal, and then the thioacetal was hydrolyzed under oxidative conditions to arrive at the key aldehyde intermediate 3. [Pg.245]

Several methods were described for the selective de-S-acetylation of 0-acetyl protected 1-thioglycoses. Sodium methoxide in methanol at low temperature (below -20 °C) was known to afford mainly the de-S-acetylated compound [16] or exclusively this compound when the reaction was quenched at low temperature by adding H-l- resin [17]. Demercuration of tetra-O-acetyl-l-phenylmercury(II)-thio- -D-glucopyranose (12) (Scheme 4) obtained by treatment of (8e) with phenylmercury(II)acetate afforded a convenient synthesis of tetra-0-acetyl-l-thio-/3-D-glucose (8a) [18]. This sequence applied to the a-anomer (10a) (Scheme 3) led to the expected de-S-acetylated compound (10b) [19]. Chemoselective deprotection of thioacetate at the anomeric position of peracetylated 1-thioglycoses was also achieved in good yield by action of cysteamine in acetonitrile or hydrazinium acetate in DMF [20,11]. [Pg.90]

Protection and deprotection of the dithiol The formaldehyde dithioace-tal (129) could be prepared by reacting the dithiol with diiodomethane and pyridine, but not with paraformaldehyde. Other thioacetals could be prepared by the standard procedure (aldehyde, BF3 etherate). Interestingly, both cis and trans dithiols gave the thioacetal, thereby enabling the complete conversion of mixtures of cis and trans dithiols to the pure cis derivative. Several mechanistic explanations are possible for the epimeri-zation at C-6 in the thioacetalization of the trans dithiol, but detailed analysis has not been done. [Pg.239]

Potassium hydroxide, 258 Trimethylsilyl chlorochromate, 327 of carbon-carbon double bonds substituted by heteroatoms m-Chloroperbenzoic acid, 76 of oximes to carbonyl compounds Lithium aluminum hydride-Hexa-methylphosphoric triamide, 159 Titanium(III) chloride-Diisobutylalu-minum hydride, 303 Trimethylsilyl chlorochromate, 327 of protected alcohols Chlorodimethylthexylsilane, 74 Formic acid, 137 p-Methoxyphenol, 181 of thioacetals and -ketals Methoxy(phenylthio)trimethyl-silylmethane, 182... [Pg.366]

Carboxy terminal amino acid or peptide thiols are prepared from various p-amino alcohols by conversion into a thioacetate (R2NHCHR1CH2SAc) via a tosylate followed by saponification.Several methods have been used to prepare N-terminal peptide thiols, the most common procedure is the coupling of (acetylsulfanyl)- or (benzoylsulfanyl)alkanoic acids or add chlorides with a-amino esters or peptide esters, followed by deprotection of the sulfanyl and carboxy groups. 8 16 Other synthetic methods include deprotection of (trit-ylsulfanyl)alkanoyl peptides, 1718 alkaline treatment of the thiolactones from protected a-sulfanyl acids, 19 and preparation of P-sulfanylamides (HSCH2CHR1NHCOR2, retro-thior-phan derivatives) from N-protected amino acids by reaction of P-amine disulfides with carboxylic acid derivatives, followed by reduction. 20,21 In many cases, the amino acid or peptide thiols are synthesized as the disulfides and reduced to the corresponding thiols by the addition of dithiothreitol prior to use. [Pg.304]


See other pages where Thioacetals protection is mentioned: [Pg.42]    [Pg.42]    [Pg.12]    [Pg.177]    [Pg.279]    [Pg.467]    [Pg.220]    [Pg.198]    [Pg.186]    [Pg.252]    [Pg.266]    [Pg.365]    [Pg.415]    [Pg.294]    [Pg.295]    [Pg.266]    [Pg.460]    [Pg.337]    [Pg.330]    [Pg.125]    [Pg.375]    [Pg.194]    [Pg.326]    [Pg.266]    [Pg.45]    [Pg.297]    [Pg.355]    [Pg.12]   
See also in sourсe #XX -- [ Pg.365 ]




SEARCH



Thioacetal

Thioacetalization

Thioacetate

Thioacetates

© 2024 chempedia.info