Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Actinide protactinium

Guillanmont R, Bonissieres G, Muxart Y (1968) Protactinium chemistiy. 1. Aqueous solutions for penta and tetravalent protactinium. Actinid Rev 1 135... [Pg.305]

Each of the elements has a number of isotopes (2,4), all radioactive and some of which can be obtained in isotopicaHy pure form. More than 200 in number and mosdy synthetic in origin, they are produced by neutron or charged-particle induced transmutations (2,4). The known radioactive isotopes are distributed among the 15 elements approximately as follows actinium and thorium, 25 each protactinium, 20 uranium, neptunium, plutonium, americium, curium, californium, einsteinium, and fermium, 15 each herkelium, mendelevium, nobehum, and lawrencium, 10 each. There is frequently a need for values to be assigned for the atomic weights of the actinide elements. Any precise experimental work would require a value for the isotope or isotopic mixture being used, but where there is a purely formal demand for atomic weights, mass numbers that are chosen on the basis of half-life and availabiUty have customarily been used. A Hst of these is provided in Table 1. [Pg.212]

The actinide elements exhibit uniformity in ionic types. In acidic aqueous solution, there are four types of cations, and these and their colors are hsted in Table 5 (12—14,17). The open spaces indicate that the corresponding oxidation states do not exist in aqueous solution. The wide variety of colors exhibited by actinide ions is characteristic of transition series of elements. In general, protactinium(V) polymerizes and precipitates readily in aqueous solution and it seems unlikely that ionic forms ate present in such solutions. [Pg.218]

Actinide Peroxides. Many peroxo compounds of thorium, protactinium, uranium, neptunium, plutonium, and americium are known (82,89). The crystal stmctures of a number of these have been deterrnined. Perhaps the best known are uranium peroxide dihydrate [1344-60-1/, UO 2H20, and, the uranium peroxide tetrahydrate [15737-4-5] UO 4H2O, which are formed when hydrogen peroxide is added to an acid solution of a uranyl salt. [Pg.96]

Prior to 1940 only the naturally occurring actinides (thorium, protactinium and uranium) were known the remainder have been produced artificially since then. The transactinides are still being synthesized and so far the nine elements with atomic numbers 104-112 have been reliably established. Indeed, the 20 manmade transuranium elements together with technetium and promethium now constitute one-fifth of all the known chemical elements. [Pg.1250]

Gnillanmont R, Bouissieres G, Muxart R (1968) Chimie du Protactinium. I. Solutions aqueuses de protactinium penta- et tetravalent. Actinides Rev 1 135-163 Harvey BG (1962) Introduction to Nuclear Physics and Chemistiy. Prentice Hall Inc, New Jersey Henderson GM, Anderson RF (2003) The U-series toolbox for paleoceanography. Rev Mineral Geochem... [Pg.20]

An additional material based on the extractant octyl-phenyl-N,N-diisobutyl-carbamoylmethylphosphine oxide, or CMPO, (marketed under the name TRU-Spec) has also been widely utilized for separations of transuranic actinides (Horwitz et al. 1993a) but is also useful for uranium-series separations (e.g., Burnett and Yeh 1995 Luo et al. 1997 Bourdon et al. 1999 Layne and Sims 2000). This material has even greater distribution coefficients for the uranium-series elements U (>1000), Th (>10000), and Pa. As shown in Figure 1, use of this material allows for sequential separations of Ra, Th, U, and Pa from a single aliquot on a single column. Separations of protactinium using this material (Bourdon et al. 1999) provide an alternative to liquid-liquid extractions documented in Pickett et al. (1994). [Pg.28]

The Van Arkel process can also be used to prepare actinide metals if the starting compound reacts easily with the transporting agent (I2). The thorium and protactinium carbides react with I2 to give volatile iodides above 350°C these are unstable above 1200°C and decompose into the actinide metals and iodine. Attempts to prepare other actinides, such as U and Pu, through the process were not successful, because from Th to Pu along the actinide series, the vapour pressure of the iodide decreases and the thermal stability increases. [Pg.366]

The first actinide metals to be prepared were those of the three members of the actinide series present in nature in macro amounts, namely, thorium (Th), protactinium (Pa), and uranium (U). Until the discovery of neptunium (Np) and plutonium (Pu) and the subsequent manufacture of milligram amounts of these metals during the hectic World War II years (i.e., the early 1940s), no other actinide element was known. The demand for Pu metal for military purposes resulted in rapid development of preparative methods and considerable study of the chemical and physical properties of the other actinide metals in order to obtain basic knowledge of these unusual metallic elements. [Pg.1]

This article presents a general discussion of actinide metallurgy, including advanced methods such as levitation melting and chemical vapor-phase reactions. A section on purification of actinide metals by a variety of techniques is included. Finally, an element-by-element discussion is given of the most satisfactory metallurgical preparation for each individual element actinium (included for completeness even though not an actinide element), thorium, protactinium, uranium, neptunium, plutonium, americium, curium, berkelium, californium, and einsteinium. [Pg.4]

The light actinide metals (Th, Pa, and U) have extremely low vapor pressures. Their preparation via the vapor phase of the metal requires temperatures as high as 2375 K for U and 2775 K for Th and Pa. Therefore, uranium is more commonly prepared by calciothermic reduction of the tetrafluoride or dioxide (Section II,A). Thorium and protactinium metals on the gram scale can be prepared and refined by the van Arkel-De Boer process, which is described next. [Pg.10]

Torstenfelt B. 1986. Migration of the actinides, thorium, protactinium, uranium, neptunium, plutonium and americium in clay. Radiochem Acta 39 105-112. [Pg.153]

Fig. 15. Experimental and calculated bulk moduli of the actinides, compared with those of lanthanides and of transition metals. The calculated values for actinides (0, 0) peak for uranium, whereas the experimental bulk-moduli (x, , -I-, A) peak for protactinium (original references to be found in )... Fig. 15. Experimental and calculated bulk moduli of the actinides, compared with those of lanthanides and of transition metals. The calculated values for actinides (0, 0) peak for uranium, whereas the experimental bulk-moduli (x, , -I-, A) peak for protactinium (original references to be found in )...
The actinide-series element protactinium (Pa, AW = 231.04) has a body-centered tetragonal structure with cell dimensions a = 0.3925 nm, c = 0.3238 nm. [Pg.41]

Because of the ease of oxidation of protactinium(IV) and uranium(IV), peroxides and peroxo complexes are limited to their higher oxidation states. The compounds M04"JcH20 precipitated from dilute acid solutions of neptunium(IV) and plutonium(IV) by hydrogen peroxide appear to be actinide(IV) compounds. Soluble intermediates of the type [Pu( U-02)2Pu]4+ are formed at low hydrogen peroxide concentrations. [Pg.1146]

Hydroxides and oxides. Protactinium(V), neptunium(V) and plutonium(V) hydroxides precipitate from alkaline aqueous solutions of the actinides(V) the last two appear to be of the form Mv02(0H)-xH20. [Pg.1180]

PROTACTINIUM. [CAS 7440-13-13], Chemical element, symbol Pa, at. no. 91, at. wt, 231.036, radioactive metal of the Actinide Series, mp is estimated at less than 1600°C, All isotopes arc radioactive. The most stable isotope is 23IPa with a half-life of 3,43 v 104 years, The latter is a second-generation daughter of a5U and a member of the actinium (2n + 3) decay series, See also Radioactivity, Electronic configuration... [Pg.1370]


See other pages where Actinide protactinium is mentioned: [Pg.13]    [Pg.212]    [Pg.212]    [Pg.213]    [Pg.216]    [Pg.217]    [Pg.220]    [Pg.16]    [Pg.16]    [Pg.76]    [Pg.86]    [Pg.14]    [Pg.103]    [Pg.366]    [Pg.48]    [Pg.312]    [Pg.305]    [Pg.14]    [Pg.78]    [Pg.168]    [Pg.198]    [Pg.240]    [Pg.314]    [Pg.23]    [Pg.328]    [Pg.1370]    [Pg.1646]    [Pg.883]    [Pg.934]    [Pg.85]   


SEARCH



Protactinium

© 2024 chempedia.info