Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Properties spectral, spectroscopic

It should be emphasized that isomerization is by no means the only process involving chemical reactions in which spectroscopy plays a key role as an experimental probe. A very exciting topic of recent interest is the observation and computation [73, 74] of the spectral properties of the transition state [6]—catching a molecule in the act as it passes the point of no return from reactants to products. Furthennore, it has been discovered from spectroscopic observation [75] that molecules can have motions that are stable for long times even above the barrier to reaction. [Pg.74]

The spectroscopic properties of the /V-nitrosamines, especially the nmr and mass spectra, vary widely depending on the substituents on the amine nitrogen (44—47). The nmr spectra are affected by the E—Z isomerism around the N—N partial double bond and by the axial—equatorial geometry resulting from conformational isomerism in the heterocycles (44,45). Some general spectral characteristics for typical dialkylnitrosamines and simple heterocycHc nitrosamines are given in Table 1. [Pg.107]

The review by Takeuchi and Ferusaki is quite encompassing and, in addition to synthesis and reactivity, the physical and spectroscopic properties of isoxazolidines are discussed in detail. Additional spectral studies on the parent and derivatives include H NMR (68MI41600, 77H(7)201, 78IZV850). [Pg.6]

Spectroscopic properties of 5 were studied (OOMIll). Spectral characteristics of 5 of 0.1 N NaOH solution were investigated by UV spectroscopy (97MI17). Three dimensional fluorescent spectral characteristics of fluoroquinolones, including 5, were studied in varying media (00SA(A)1787). The structure of 8 was confirmed by UV and IR studies (98MI89). [Pg.268]

Thus, a more complete study of the spectral properties and the structure of intermediates frozen in inert matrices is achieved when the IR, Raman, UV and esr spectroscopic methods are mutually complementary. Since IR spectroscopy is the most informative method of identification of matrix-isolated molecules, this review is mainly devoted to studies which have been performed using this technique. [Pg.7]

Nevertheless, a more traditional approach to the stabilization of carbenes and the investigation of their spectral properties deals with the direct generation of carbenes in low-temperature matrices, e.g. by the photolysis of diazo-compounds or ketenes. The method allows stabilization of carbenes in their ground electronic state, prevents intramolecular isomerization and also facilitates direct spectroscopic monitoring of their chemical transformations in low-temperature matrices. [Pg.12]

The results described in this review show that matrix stabilization of reactive organic intermediates at extremely low temperatures and their subsequent spectroscopic detection are convenient ways of structural investigation of these species. IR spectroscopy is the most useful technique for the identification of matrix-isolated molecules. Nevertheless, the complete study of the spectral properties and the structure of intermediates frozen in inert matrices is achieved when the IR spectroscopy is combined with UV and esr spectroscopic methods. At present theoretical calculations render considerable assistance for the explanation of the experimental spectra. Thus, along with the development of the experimental technique, matrix studies are becoming more and more complex. This fact allows one to expect further progress in the matrix spectroscopy of many more organic intermediates. [Pg.56]

Spectroscopic detectors, which measure different spectral properties (absorption, fluorescence, scattering, etc.), may be element selective, structure or functionality selective, or property selective. The most common... [Pg.179]

It is a spectroscopic technique, hence the optical properties of the film can be probed over the entire spectral range of the instrument, typically UV to near-IR. [Pg.133]

The pyrene-like aromatic chromophore of BaPDE is characterized by a prominent and characteristic absorption spectrum in the A 310-360 nm spectral region, and a fluorescence emission in the X 370-460 nm range. These properties are sensitive to the local microenvironment of the pyrenyl chromophore, and spectroscopic techniques are thus useful in studies of the structures of the DNA adducts and in monitoring the reaction pathways of BaPDE and its hydrolysis products in DNA solutions. [Pg.114]

Although these compounds are generally stable, no thorough investigation of their spectroscopic properties has been reported. Spectral characteristics used for identification are usually not very useful. The most general results are obvious in IR spectroscopy. These compounds usually... [Pg.199]

The structure of HRP-I has been identified as an Fe(IV) porphyrin -ir-cation radical by a variety of spectroscopic methods (71-74). The oxidized forms of HRP present differences in their visible absorption spectra (75-77). These distinct spectral characteristics of HRP have made this a very useful redox protein for studying one-electron transfers in alkaloid reactions. An example is illustrated in Fig. 2 where the one-electron oxidation of vindoline is followed by observing the oxidation of native HRP (curve A) with equimolar H202 to HRP-compound I (curve B). Addition of vindoline to the reaction mixture yields the absorption spectrum of HRP-compound II (curve C) (78). This methodology can yield useful information on the stoichiometry and kinetics of electron transfer from an alkaloid substrate to HRP. Several excellent reviews on the properties, mechanism, and oxidation states of peroxidases have been published (79-81). [Pg.347]

Proton and 13C NMR spectral data of 33 derivatives of 64 have been tabulated and assigned <1996MRC409>. Several 3-oxo derivatives of 64 have been studied by proton and 13C NMR spectroscopy as part of a comprehensive investigation of their structural and spectroscopic properties <2003BCJ2361>. The regioselectivity of the formation of the six-membered ring in derivatives of 67 from 1,3-diketones has been established by proton NMR spectroscopy and nuclear Overhauser effects <1997CHE535>. [Pg.555]

This comparison of the spectroscopic properties of the different types of fluorescent reporters underlines that semiconductor QDs and upconverting nanoparticles have no analogs in the field of organic dyes. Therefore, their unique features are unrivaled. The different molecular labels detailed here each display unique advantages that can compete with some of the favorable features of QDs and upconverting phosphors such as long lifetimes in the case of MLC systems and lanthanide chelates or very narrow emission bands for lanthanide chelates beneficial for spectral multiplexing. [Pg.17]


See other pages where Properties spectral, spectroscopic is mentioned: [Pg.34]    [Pg.34]    [Pg.283]    [Pg.260]    [Pg.2482]    [Pg.2489]    [Pg.2496]    [Pg.2501]    [Pg.2]    [Pg.220]    [Pg.825]    [Pg.32]    [Pg.32]    [Pg.28]    [Pg.29]    [Pg.107]    [Pg.832]    [Pg.158]    [Pg.119]    [Pg.144]    [Pg.363]    [Pg.530]    [Pg.42]    [Pg.192]    [Pg.63]    [Pg.190]    [Pg.455]    [Pg.116]    [Pg.160]    [Pg.662]    [Pg.214]    [Pg.6]    [Pg.13]   
See also in sourсe #XX -- [ Pg.51 , Pg.237 ]




SEARCH



Property spectroscopic

Spectral properties

© 2024 chempedia.info