Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Proline prolinol-derived chiral auxiliaries

There are several reports dealing with the use of tetrahydropyrrolo[l,4]oxazinones derived from natural proline or prolinol as chiral auxiliaries for the synthesis of enantiomerically pure compounds. The preparation of the heterocycle is described in Scheme 33 (Section 11.11.7.4). The presence of a rigid bicyclic skeleton allows stereoselective introduction of different substituents. The final ring opening of the system (generally by hydrolysis) provides enantiomerically pure compounds with the possibility of recycling the starting chiral auxiliary. [Pg.507]

Chiral Amines with C2 Symmetry, trans-2,5-Dimethylpyrrolidine (1) was the first chiral amine possessing C2 symmetry used as a chiral auxiliary in asymmetric synthesis. Since that time a number of related systems have been developed including the title compound (2) and (4). These amines were developed as C2-symmetric analogs to the commercially available prolinol derivative (5). While proline-derived chiral auxiliaries have been widely used in asymmetric synthesis, the C2-symmetric chiral auxiliaries often give enhanced stereoselectivity when compared directly to the prolinol derivatives. Unfortunately the preparation of the C2-symmetric compounds is more tedious and, at the time of writing, none are commercially available. For example, the standard route to chiral pyrrolidines (2) and (3) involves the resolution of tranf-N-benzylpyrrolidine-2,5-dicarboxylic acid, although other preparations have been... [Pg.138]

As with the above pyrrolidine, proline-type chiral auxiliaries also show different behaviors toward zirconium or lithium enolate mediated aldol reactions. Evans found that lithium enolates derived from prolinol amides exhibit excellent diastereofacial selectivities in alkylation reactions (see Section 2.2.32), while the lithium enolates of proline amides are unsuccessful in aldol condensations. Effective chiral reagents were zirconium enolates, which can be obtained from the corresponding lithium enolates via metal exchange with Cp2ZrCl2. For example, excellent levels of asymmetric induction in the aldol process with synj anti selectivity of 96-98% and diastereofacial selectivity of 50-200 116a can be achieved in the Zr-enolate-mediated aldol reaction (see Scheme 3-10). [Pg.144]

In the past Lewis acid-catalyzed [4+2] cycloaddition reactions of chiral alkyl acrylates have been systematically studied. Chiral auxiliaries derived from camphor, menthol and amino acids or from carbohydrates have been developed. Stereochemical and theoretical aspects of these chiral inductors have been intensively reviewed (see. Chapter 6). Asymmetric Diels-Alder reactions of chiral acrylamides derived from Ca-symmetrical secondary amines lead selectively to the cycloadducts in the presence of Lewis acids such as AICI3. In reactions of chiral auxiliaries derived from (iS)-proline and (iS)-prolinol excellent endo/exo selectivities and diastereoselectivities were obtained in the presence of catalytic amounts of Et2AlCl or TiCL. Cycloadducts of chiral crotonoyl derivatives derived from oxazolidinones 62, sultam 63 or for example (S)-lactate IS were obtained with high selectivities in the presence of Lewis acids such as Et2AICl. [Pg.51]

The investigations of Enders, Evans, and others have demonstrated the versatility of chiral auxiliaries based on the proline skeleton [80]. Katsuki designed and utilized a C2-symmetric, 2,5-disubstituted pyrrolidine auxiliary for asymmetric enolate alkylations (Equation 10) [81]. Enolates prepared from 112 generally undergo alkylations with superb diastereoselectivity dr >95 5). However, in contrast to the prolinol amide-derived systems described above, accessibility of the chiral auxiliary hinged upon a multi-step synthetic preparation involving resolution, and the hydrolytic removal of the auxiliary necessitated considerably harsher reaction conditions. [Pg.81]

Among the ethers of prolinol, (5)-2-methoxymethylpyrrolidinc [SMP, (S)-10] has found most applications. It is readily prepared from prolinol by the normal sodium hydride/iodo-methane technique9,13 (sec also Section 2.3. for O-alkylations of other amino alcohols) and is also commercially available. An improved synthesis from proline avoids the isolation of intermediates and gives the product (which is highly soluble in water) by continuous extraction14. SMP has been used as the lithium salt in deprotonation and elimination reactions (Section C.) and as an auxiliary for the formation of chiral amides with carboxylic acids, which in turn can undergo carbanionic reactions (Sections D.l.3.1.4., D.l. 1.1.2.. D.l. 1.1.3.1., in the latter experimental procedures for the formation of amides can be found). Other important derivatives are the enamines of SMP which are frequently used for further alkylation reactions via enolates (Sections D.l.1.2.2.. where experimental procedures for the formation of enamines are... [Pg.49]


See also in sourсe #XX -- [ Pg.336 , Pg.340 ]




SEARCH



Chiral auxiliaries prolines

Chiral auxiliaries prolinol

Chiral auxiliary prolinol derivative

Chiral derivatives

Chiral proline-derived

Chirality auxiliaries

Proline auxiliary

Proline deriv

Proline derivative

Proline derivatives prolinols

Prolines Prolinol

Prolinol

Prolinols

Prolinols derivatives

© 2024 chempedia.info