Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Product simplexes defined

Mayur et al. (1970) formulated a two level dynamic optimisation problem to obtain optimal amount and composition of the off-cut recycle for the quasi-steady state operation which would minimise the overall distillation time for the whole cycle. For a particular choice of the amount of off-cut and its composition (Rl, xRI) (Figure 8.1) they obtained a solution for the two distillation tasks which minimises the distillation time of the individual tasks by selecting an optimal reflux policy. The optimum reflux ratio policy is described by a function rft) during Task 1 when a mixed charge (BC, xBC) is separated into a distillate (Dl, x DI) and a residue (Bl, xBi), followed by a function r2(t) during Task 2, when the residue is separated into an off-cut (Rl, xR2) and a bottom product (B2, x B2)- Both r2(t)and r2(t) are chosen to minimise the time for the respective task. However, these conditions are not sufficient to completely define the operation, because Rl and xRI can take many feasible values. Therefore the authors used a sequential simplex method to obtain the optimal values of Rl and xR which minimise the overall distillation time. The authors showed for one example that the inclusion of a recycled off-cut reduced the batch time by 5% compared to the minimum time for a distillation without recycled off-cut. [Pg.232]

Having identified the symmetries of the electronic distortion operators, we now determine the symmetries of the nuclear degrees of freedom. These are defined as the direct product of the positional representation with the symmetry of the translations [12,16]. The n-simplex is situated in a (n — 1)-dimensional space and thus will exhibit (n - 1) translations. The corresponding irrep is denoted as Ft-. One easily realizes that this will correspond to the (n — 1,1) irrep from the center of the simplex one can move in n different directions, but the vectorial sum of all these directions amounts to zero, hence the translational space has one degree of freedom less than the number of sites. The direct product can be decomposed in a standard way as follows ... [Pg.37]

Evolutionary operation (EVOP) was proposed by Box and Draper to answer this problem (22). Any number of variables may be treated, but in general it is limited to the two or three critical factors known already, from the pilot scale process study, to have an influence on the properties or yield of the product. By very slightly altering the values of these variables in a systematic manner - they should remain within the limits already defined as acceptable - the dependence of the product on the operating conditions can be assessed, and in some cases the process can be improved. Two level factorial designs, or the simplex (1), are most commonly used. [Pg.303]

We previously examined the process of reversible distillation for a given feed point. Below we examine trajectories of reversible distillation sections for given product points located at any -component boundary elements Q of the concentration simplex (xd e C or xg e Q). If / < (n - 1), then in the general case such trajectories should consist of two parts the part located in the same -component boundary element where the product point lies and the part located at some (k+ l)-component boundary element adjacent to it. Along with that, the product point should belong to the possible product composition region Reg or Reg for the examined ( )-component boundary element, and the boundaries of this region can be defined with the help of Eqs. (4.19) and (4.20). [Pg.89]

To define the frame of possible product composition regions Reg, or RegB at the edges of concentration simplex, it is enough to determine values of phase equilibrium coefficients in the points of edges for the components present and for the component, which is absent in the product. [Pg.105]


See other pages where Product simplexes defined is mentioned: [Pg.543]    [Pg.249]    [Pg.178]    [Pg.457]    [Pg.29]    [Pg.933]    [Pg.79]    [Pg.183]    [Pg.104]    [Pg.197]    [Pg.52]    [Pg.205]   
See also in sourсe #XX -- [ Pg.49 , Pg.59 , Pg.61 , Pg.63 , Pg.326 ]




SEARCH



Product simplexes

Productivity defined

Productivity/production defined

Products, defined

Simplex defining

Simplexes

© 2024 chempedia.info