Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Product quantum-mechanical

Since it is not possible to generate antisynnnetric combinations of products if the same spin orbital appears twice in each tenn, it follows that states which assign the same set of four quantum numbers twice cannot possibly satisfy the requirement P.j i = -ij/, so this statement of the exclusion principle is consistent with the more general symmetry requirement. An even more general statement of the exclusion principle, which can be regarded as an additional postulate of quantum mechanics, is... [Pg.30]

At the time the experiments were perfomied (1984), this discrepancy between theory and experiment was attributed to quantum mechanical resonances drat led to enhanced reaction probability in the FlF(u = 3) chaimel for high impact parameter collisions. Flowever, since 1984, several new potential energy surfaces using a combination of ab initio calculations and empirical corrections were developed in which the bend potential near the barrier was found to be very flat or even non-collinear [49, M], in contrast to the Muckennan V surface. In 1988, Sato [ ] showed that classical trajectory calculations on a surface with a bent transition-state geometry produced angular distributions in which the FIF(u = 3) product was peaked at 0 = 0°, while the FIF(u = 2) product was predominantly scattered into the backward hemisphere (0 > 90°), thereby qualitatively reproducing the most important features in figure A3.7.5. [Pg.878]

The molecular beam and laser teclmiques described in this section, especially in combination with theoretical treatments using accurate PESs and a quantum mechanical description of the collisional event, have revealed considerable detail about the dynamics of chemical reactions. Several aspects of reactive scattering are currently drawing special attention. The measurement of vector correlations, for example as described in section B2.3.3.5. continue to be of particular interest, especially the interplay between the product angular distribution and rotational polarization. [Pg.2085]

In the mixed quantum-classical molecular dynamics (QCMD) model (see [11, 9, 2, 3, 5] and references therein), most atoms are described by classical mechanics, but an important small portion of the system by quantum mechanics. The full quantum system is first separated via a tensor product ansatz. The evolution of each part is then modeled either classically or quan-tally. This leads to a coupled system of Newtonian and Schrbdinger equations. [Pg.426]

Clearly then, the understanding of chemical reactions under such a variety of conditions is still in its infancy and the prediction of the course and products of a chemical reaction poses large problems. The ab initio quantum mechanical calculation of the pathway and outcome of a single chemical reaction can only be... [Pg.169]

The theory of chemical reactions has many facets including elaborate quantum mechanical scattering approaches that treat the kinetic energy of atoms by proper wave mechanical methods. These approaches to chemical reaction theory go far beyond the capabilities of a product like HyperChem as many of the ideas are yet to have wide-spread practical implementations. [Pg.327]

One aspect of the mathematical treatment of the quantum mechanical theory is of particular interest. The wavefunction of the perturbed molecule (i.e. the molecule after the radiation is switched on ) involves a summation over all the stationary states of the unperturbed molecule (i.e. the molecule before the radiation is switched on ). The expression for intensity of the line arising from the transition k —> n involves a product of transition moments, MkrMrn, where r is any one of the stationary states and is often referred to as the third common level in the scattering act. [Pg.297]

According to the usual rules of quantum mechanics the probability amplitude for finding a particle described by the amplitude (f>(x) to be localized at y is then given by the scalar product, ) This quantity is readily computed and one verifies that... [Pg.502]

The H2O molecules are cooled in a supersonic expansion to a rotational temperature of 10K before photodissociation. The evidence for pathway competition is an odd-even intensity alteration in the OH product state distribution for rotational quantum numbers V = 33 45. This intensity alternation is attributed to quantum mechanical interference due to the N-dependent phase shifts that arise as the population passes through the two different conical intersections. [Pg.258]

The main handicap of MD is the knowledge of the function [/( ). There are some systems where reliable approximations to the true (7( r, ) are available. This is, for example, the case of ionic oxides. (7( rJ) is in such a case made of coulombic (pairwise) interactions and short-range terms. A second example is a closed-shell molecular system. In this case the interaction potentials are separated into intraatomic and interatomic parts. A third type of physical system for which suitable approaches to [/( r, ) exist are the transition metals and their alloys. To this class of models belong the glue model and the embedded atom method. Systems where chemical bonds of molecules are broken or created are much more difficult to describe, since the only way to get a proper description of a reaction all the way between reactant and products would be to solve the quantum-mechanical problem at each step of the reaction. [Pg.663]


See other pages where Product quantum-mechanical is mentioned: [Pg.799]    [Pg.799]    [Pg.878]    [Pg.878]    [Pg.1502]    [Pg.73]    [Pg.95]    [Pg.220]    [Pg.261]    [Pg.434]    [Pg.86]    [Pg.178]    [Pg.213]    [Pg.306]    [Pg.329]    [Pg.36]    [Pg.199]    [Pg.515]    [Pg.91]    [Pg.197]    [Pg.217]    [Pg.297]    [Pg.35]    [Pg.299]    [Pg.460]    [Pg.282]    [Pg.495]    [Pg.536]    [Pg.728]    [Pg.731]    [Pg.30]    [Pg.8]    [Pg.240]    [Pg.14]    [Pg.29]    [Pg.36]    [Pg.41]    [Pg.112]    [Pg.241]    [Pg.667]    [Pg.318]   
See also in sourсe #XX -- [ Pg.40 , Pg.41 , Pg.42 , Pg.43 , Pg.44 , Pg.58 , Pg.190 ]




SEARCH



Product mechanical

© 2024 chempedia.info