Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Prochiral dicarboxylic acid diesters

Asymmetrization of a prochiral dicarboxylic acid diester catalyzed by lipases, where the stereo center of the product is located on the acyl side, becomes a single-step process because the polar carboxylic acid and/or amide formed are not well accepted as substrates by the Upase. One example is the enantioselective hydrolysis or ammonolysis of diethyl 3-hydroxyglutarate, as shown in Scheme 7.4, a reaction which leads to the formation of a precursor for the important chiral side chain of atorvastatin, lipitor [40, 41]. The S-enantiomer was formed with high e.e. (98%), but unfortunately this is the undesired enantiomer for the production of the pharmaceutically important product. Only a-chymotrypsin gave a predominance of the... [Pg.103]

A limited number of acyclic and cyclic prochiral dicarboxylic acid diesters were found to be good substrates for hydrolysis catalyzed by lipases (Table 11.1-12). Notable examples which give a good illustration of the potential of hydrolases as well as of the trial and error approach one relies on to a certain extent are the dithio acetal derivative 9 and the fluoro alkyl malonates 1-8. The dithio monoester 9 is obtained with different lipases with high enantioselectivities and yields despite its remote chiral center. Candida cylindracea lipase is the enzyme of choice for the synthesis of fluoro alkyl malonates with small alkyl groups. An astonishing observation was... [Pg.427]

Table 11.7-1. Pig liver esterase-catalyzed enantiotopos-differentiating hydrolysis of prochiral cyclic dicarboxylic acid diesters in aqueous solution. Table 11.7-1. Pig liver esterase-catalyzed enantiotopos-differentiating hydrolysis of prochiral cyclic dicarboxylic acid diesters in aqueous solution.
Table 11.1-12. Lipase-catalyzed enantiotopos-differentiating hydrolysis of prochiral acyclic and cyclic dicarboxylic acid diesters in aqueous solution (CCL Candida cylindracea lipase, PPL pig pancreas lipase, PSL Pseudomonas sp. lipase, CVL Chromobacterium viscosum lipase,... Table 11.1-12. Lipase-catalyzed enantiotopos-differentiating hydrolysis of prochiral acyclic and cyclic dicarboxylic acid diesters in aqueous solution (CCL Candida cylindracea lipase, PPL pig pancreas lipase, PSL Pseudomonas sp. lipase, CVL Chromobacterium viscosum lipase,...
Prochiral and meso-compounds have been widely transformed into chiral products through transesterification reactions as shown with the acylation of diols (Fig. 14,1 and II). In transesterification, the prochiral or meso-substrate can also be a dicarboxylic acid diester. Common to such compounds is a plane of symmetry... [Pg.2093]

In kinetic resolutions (Scheme 3.2-3.5) it is often the case that one of the products is required, while the other is not and must be discarded or recycled (e.g. racemised). Such operations can be wasteful or expensive. On the other hand, the biotransformation of wcso-compounds or prochiral compounds allows for the possibility of preparing an optically pure compound in quantitative yield. In Scheme 3.7, two examples of the use of meso-compounds are described. The diester (11) is made up of a complex dicarboxylic acid unit derivatised as the dimethyl ester. Pig liver esterase catalyses the hydrolysis of one of the ester groups to give the acid (12) (95% e.e.) in 96% yield. This compound is an excellent precursor of the natural product neplanocin. Note that the acid (12) is not a substrate for pie, and thus the reaction stops at the half-way stage. The compound (13), like (11), possesses a plane of symmetry. Hydrolysis catalysed by porcine pancreatic lipase (ppl) affords the alcohol (14) (>98% e.e.) in quantitative yield. The latter compound has been used to make fluorocarbocyclic adenosine (C -adenosine), a stable analogue of the naturally occurring nucleoside adenosine. [Pg.85]


See other pages where Prochiral dicarboxylic acid diesters is mentioned: [Pg.398]    [Pg.242]   
See also in sourсe #XX -- [ Pg.361 ]




SEARCH



Dicarboxylic acid diester

Dicarboxylic diesters

Prochiral

Prochiral dicarboxylates

Prochirality

© 2024 chempedia.info