Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Processing techniques solution processes

In processing polymer blends, equipment selection, conditions, and formulation are highly important to control the final morphology. In this chapter, a review of the fundamentals in mixing (laminar, chaotic, dispersive, and distributive) is given before presenting the main limitations/problems related to interfacial properties, coalescence, and measure of mixing quality. Then, different methods and equipments are presented for lab-scale and industrial applications. A special focus is made on reactive system and phase compatibilization to improve the properties of the final blends. Also, nonmechanical techniques (solutions) are presented. [Pg.920]

Films and Three Different Uniplanar Orientations of the Cocrystalline Phases Film processing in the presence of suitable solvents can lead to the formation of co-crystalline films exhibiting three different kinds of uniplanar orientations of the co-crystalline phases [69-75,95], The degree and the kind of uniplanar orientation depends on the selected technique (solution crystallization procedures or solvent-induced crystallization in amorphous... [Pg.199]

The solution adopted by us is the use of computer simulations of mathematical models of the process and the mock-up situations. Eventually, simulation techniques will become so accurate, that the mock-up step can be discarded. For the time being it is reasonable to use such models to generate corrections for smaller differences between mock-up and process. [Pg.1056]

The Langmuir-Hinshelwood picture is essentially that of Fig. XVIII-14. If the process is unimolecular, the species meanders around on the surface until it receives the activation energy to go over to product(s), which then desorb. If the process is bimolecular, two species diffuse around until a reactive encounter occurs. The reaction will be diffusion controlled if it occurs on every encounter (see Ref. 211) the theory of surface diffusional encounters has been treated (see Ref. 212) the subject may also be approached by means of Monte Carlo/molecular dynamics techniques [213]. In the case of activated bimolecular reactions, however, there will in general be many encounters before the reactive one, and the rate law for the surface reaction is generally written by analogy to the mass action law for solutions. That is, for a bimolecular process, the rate is taken to be proportional to the product of the two surface concentrations. It is interesting, however, that essentially the same rate law is obtained if the adsorption is strictly localized and species react only if they happen to adsorb on adjacent sites (note Ref. 214). (The apparent rate law, that is, the rate law in terms of gas pressures, depends on the form of the adsorption isotherm, as discussed in the next section.)... [Pg.722]

The process of field ionization presupposes that the substance under investigation has been volatilized by heat, so some molecules of vapor settle onto the tips held at high potential. In such circumstances, thermally labile substances still cannot be examined, even though the ionization process itself is mild. To get around this difficulty, a solution of the substance under investigation can be placed on the wire and the solvent allowed to evaporate. When an electric potential is applied, positive or negative ions are produced, but no heating is necessary to volatilize the substance. This technique is called field desorption (FD) ionization. [Pg.387]

Catalyst recovery is a major operational problem because rhodium is a cosdy noble metal and every trace must be recovered for an economic process. Several methods have been patented (44—46). The catalyst is often reactivated by heating in the presence of an alcohol. In another technique, water is added to the homogeneous catalyst solution so that the rhodium compounds precipitate. Another way to separate rhodium involves a two-phase Hquid such as the immiscible mixture of octane or cyclohexane and aliphatic alcohols having 4—8 carbon atoms. In a typical instance, the carbonylation reactor is operated so the desired products and other low boiling materials are flash-distilled. The reacting mixture itself may be boiled, or a sidestream can be distilled, returning the heavy ends to the reactor. In either case, the heavier materials tend to accumulate. A part of these materials is separated, then concentrated to leave only the heaviest residues, and treated with the immiscible Hquid pair. The rhodium precipitates and is taken up in anhydride for recycling. [Pg.78]

Dyna.micPerforma.nce, Most models do not attempt to separate the equiUbrium behavior from the mass-transfer behavior. Rather they treat adsorption as one dynamic process with an overall dynamic response of the adsorbent bed to the feed stream. Although numerical solutions can be attempted for the rigorous partial differential equations, simplifying assumptions are often made to yield more manageable calculating techniques. [Pg.286]

Combinatorial. Combinatorial methods express the synthesis problem as a traditional optimization problem which can only be solved using powerful techniques that have been known for some time. These may use total network cost direcdy as an objective function but do not exploit the special characteristics of heat-exchange networks in obtaining a solution. Much of the early work in heat-exchange network synthesis was based on exhaustive search or combinatorial development of networks. This work has not proven useful because for only a typical ten-process-stream example problem the alternative sets of feasible matches are cal.55 x 10 without stream spHtting. [Pg.523]


See other pages where Processing techniques solution processes is mentioned: [Pg.434]    [Pg.55]    [Pg.55]    [Pg.460]    [Pg.367]    [Pg.466]    [Pg.65]    [Pg.110]    [Pg.3]    [Pg.2590]    [Pg.2925]    [Pg.2946]    [Pg.222]    [Pg.317]    [Pg.499]    [Pg.17]    [Pg.18]    [Pg.80]    [Pg.91]    [Pg.141]    [Pg.155]    [Pg.191]    [Pg.287]    [Pg.364]    [Pg.770]    [Pg.397]    [Pg.43]    [Pg.163]    [Pg.51]    [Pg.241]    [Pg.310]    [Pg.533]    [Pg.545]    [Pg.20]    [Pg.253]    [Pg.423]    [Pg.530]    [Pg.208]    [Pg.224]    [Pg.378]    [Pg.517]    [Pg.65]    [Pg.77]   
See also in sourсe #XX -- [ Pg.181 ]

See also in sourсe #XX -- [ Pg.181 ]

See also in sourсe #XX -- [ Pg.181 ]




SEARCH



Fabrication techniques solution processing

Processing techniques

Self-Organization of Phthalocyanines on Surfaces by Solution-Processable Techniques

Solute process

Solution processability

Solution processes

Solution processing

Solution techniques

Solution-processable techniques

Solution-processable techniques

Solutizer process

© 2024 chempedia.info