Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Processing equilibrium constants

Thus, for spontaneous processes at constant temperature and volume a new quantity, the Helmholtz free energy A, decreases. At equilibrium under such restrictions cL4 = 0. [Pg.346]

For spontaneous processes at constant temperature and pressure it is the Gibbs free energy G that decreases, while at equilibrium under such conditions dG = 0. [Pg.347]

Ni < > Zn. This order is usually observed for equilibrium constants of binding processes and... [Pg.59]

So far the four metal ions have been compared with respect to their effect on (1) the equilibrium constant for complexation to 2.4c, (2) the rate constant of the Diels-Alder reaction of the complexes with 2.5 and (3) the substituent effect on processes (1) and (2). We have tried to correlate these data with some physical parameters of the respective metal-ions. The second ionisation potential of the metal should, in principle, reflect its Lewis acidity. Furthermore the values for Iq i might be strongly influenced by the Lewis-acidity of the metal. A quantitative correlation between these two parameters... [Pg.60]

The rate of this reaction is significantly enhanced over catalysts such as copper chloride which is the basis for the Deacon process for producing CI2 from HCl. The relationship between the equilibrium constant and the temperature in Kelvin for the reaction is expressed by equation 19. [Pg.444]

Thermochemical Data. Equilibrium considerations significantly limit alcohol yield at low pressures in the vapor-phase process (116). Consequently, conditions controlling equilibrium constants have been determined and give the following relation, where Tis in K (116,117) ... [Pg.110]

Process Applications The production of esters from alcohols and carboxylic acids illustrates many of the principles of reactive distillation as applied to equilibrium-limited systems. The equilibrium constants for esterification reactions are usually relatively close to unity. Large excesses of alcohols must be used to obtain acceptable yields with large recycles. In a reactive-distiUation scheme, the reac-... [Pg.1321]

A more general, and for the moment, less detailed description of the progress of chemical reactions, was developed in the transition state theory of kinetics. This approach considers tire reacting molecules at the point of collision to form a complex intermediate molecule before the final products are formed. This molecular species is assumed to be in thermodynamic equilibrium with the reactant species. An equilibrium constant can therefore be described for the activation process, and this, in turn, can be related to a Gibbs energy of activation ... [Pg.47]

In the case of tire direct oxidation, the oxygen partial pressure must be greater than that at the Pb/PbO equilibrium, while in the process involving sodium-based salts, the oxygen pressure is less than this. The two equilibrium constants for the refining reactions... [Pg.356]

Kinetic data provide information only about the rate-determining step and steps preceding it. In the hypothetical reaction under consideration, the final step follows the rate-determining step, and because its rate will not affect the rate of the overall reaction, will not appear in the overall rate expression. The rate of the overall reaction is governed by the second step, which is the bottleneck in the process. The rate of this step is equal to A2 multiplied by the molar concentration of intermediate C, which may not be directly measurable. It is therefore necessary to express the rate in terms of the concentrations of reactants. In the case under consideration, this can be done by recognizing that [C] is related to [A] and [B] by an equilibrium constant ... [Pg.194]

Both the principles of chemical reaction kinetics and thermodynamic equilibrium are considered in choosing process conditions. Any complete rate equation for a reversible reaction involves the equilibrium constant, but quite often, complete rate equations are not readily available to the engineer. Thus, the engineer first must determine the temperature range in which the chemical reaction will proceed at a... [Pg.59]

Equation 11-15 is known as the Michaelis-Menten equation. It represents the kinetics of many simple enzyme-catalyzed reactions, which involve a single substrate. The interpretation of as an equilibrium constant is not universally valid, since the assumption that the reversible reaction as a fast equilibrium process often does not apply. [Pg.839]

At the instant a pressure vessel ruptures, pressure at the contact surface is given by Eq. (6.3.22). The further development of pressure at the contact surface can only be evaluated numerically. However, the actual p-V process can be adequately approximated by the dashed curve in Figure 6.12. In this process, the constant-pressure segment represents irreversible expansion against an equilibrium counterpressure P3 until the gas reaches a volume V3. This is followed by an isentropic expansion to the end-state pressure Pq. For this process, the point (p, V3) is not on the isentrope which emanates from point (p, V,), since the first phase of the expansion process is irreversible. Adamczyk calculates point (p, V3) from the conservation of energy law and finds... [Pg.191]

If the rate equation contains the concentration of a species involved in a preequilibrium step (often an acid-base species), then this concentration may be a function of ionic strength via the ionic strength dependence of the equilibrium constant controlling the concentration. Therefore, the rate constant may vary with ionic strength through this dependence this is called a secondary salt effect. This effect is an artifact in a sense, because its source is independent of the rate process, and it can be completely accounted for by evaluating the rate constant on the basis of the actual species concentration, calculated by means of the equilibrium constant appropriate to the ionic strength in the rate study. [Pg.386]

At equilibrium, the ratio of concentrations is an equilibrium constant, so we can write the standard free energy change for the process as... [Pg.419]

Enthalpy changes for biochemical processes can be determined experimentally by measuring the heat absorbed (or given off) by the process in a calorimeter (Figure 3.2). Alternatively, for any process B at equilibrium, the standard-state enthalpy change for the process can be determined from the temperature dependence of the equilibrium constant ... [Pg.58]

In any of these forms, this relationship allows the standard-state free energy change for any process to be determined if the equilibrium constant is known. More importantly, it states that the equilibrium established for a reaction in solution is a function of the standard-state free energy change for the process. That is, AG° is another way of writing an equilibrium constant. [Pg.62]

The equilibrium constants determined by Brandts at several temperatures for the denaturation of chymotrypsinogen (see previous Example) can be used to calculate the free energy changes for the denaturation process. For example, the equilibrium constant at 54.5°C is 0.27, so... [Pg.62]

The component with the lowest equilibrium constant is called the key component in the stripping process, because it yields the largest value of Vnjm- This largest value is the true minimum air flowrate, whereas the actual air flowrate should be selected at 1.20 to 2.0 times the minimum. This becomes a balance between fewer theoretical stages at actual air flowrate, yet requires a larger diameter column to carry out the operation. [Pg.100]

The production of ammonia is of historical interest because it represents the first important application of thermodynamics to an industrial process. Considering the synthesis reaction of ammonia from its elements, the calculated reaction heat (AH) and free energy change (AG) at room temperature are approximately -46 and -16.5 KJ/mol, respectively. Although the calculated equilibrium constant = 3.6 X 108 at room temperature is substantially high, no reaction occurs under these conditions, and the rate is practically zero. The ammonia synthesis reaction could be represented as follows ... [Pg.144]

K. See Equilibrium constant Ka. See Acid equilibrium constant See Base equilibrium constant Kc. See Equilibrium constant Kf. See Formation equilibrium constant Kr See Equilibrium constant K,p. See Solubility product constant K . See Water ion product constant K-electron capture The natural radioactive process in which an inner electron (n = 1) enters the nucleus, converting a proton to a neutron, 514 Kelvin, Lord, 8... [Pg.690]


See other pages where Processing equilibrium constants is mentioned: [Pg.592]    [Pg.177]    [Pg.592]    [Pg.177]    [Pg.234]    [Pg.367]    [Pg.235]    [Pg.392]    [Pg.712]    [Pg.76]    [Pg.174]    [Pg.20]    [Pg.49]    [Pg.6]    [Pg.88]    [Pg.103]    [Pg.238]    [Pg.360]    [Pg.19]    [Pg.144]    [Pg.351]    [Pg.43]    [Pg.79]    [Pg.79]    [Pg.707]    [Pg.210]    [Pg.354]    [Pg.203]    [Pg.1162]   
See also in sourсe #XX -- [ Pg.243 ]




SEARCH



Activation-deactivation processes equilibrium constant

Endothermic process equilibrium constant

Equilibrium constant processes

Equilibrium constant processes

Equilibrium process

Exothermic process equilibrium constant

© 2024 chempedia.info