Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Prins reaction, alkyne

Protonic acid and Lewis acids can activate carbonyls to facilitate the addition of nucleophile attacks in aqueous media. The Prins reaction, reaction with alkyne, and Friedel-Crafts-type reactions have been discussed in related chapters in detail. [Pg.281]

Spirocyclic 4-substituted tetrahydropyrans are readily obtained through the Prins reaction involving cyclic ketones, homoallylic alcohols and MeS03H <02H(58)659>. The cationic species generated when alkyne-Co complexes derived from 8-valerolactone are treated with SnCl4 undergo a double cyclisation to yield the oxaspiro[5.5]undecane <02T2755>. [Pg.364]

Coverage in this chapter is restricted to the use of alkenes or alkynes as enophiles (equation 1 X = Y = C) and to the use of ene components in which a hydrogen is transferred. Coverage in Sections 1.2 and 1.3 is restricted to ene components in which all three heavy atoms are carbon (equation 1 Z = C). Thermal intramolecular ene reactions of enols (equation 1 Z = O) with unactivated alkenes are presented in Section 1.4. Metallo-ene reactions are covered in the following chapter. Use of carbonyl compounds as enophiles, which can be considered as a subset of the Prins reaction, is covered in depth in Volume 2, Chtqiter 2.1. Addition of enophiles to vinylsilanes and allylsilanes is covered in Volume 2, Chapter 2.2, while addition of enophiles to enol ethers is covered in Volume 2, Chapters 2.3-2.S. Addition of imines and iminium compounds to alkenes is presented in Volume 2, Part 4. Use of alkenes, aldehydes and acetals as initiators for polyene cyclizations is covered in Volume 3, Chapter 1.9. Coverage of singlet oxygen, azo, nitroso, S=N, S=0, Se=N or Se=0 enophiles are excluded since these reactions do not result in the formation of a carbon-carbon bond. [Pg.3]

The ene and Prins reactions are not mechanistically distinct. Coverage will therefore be organized by the nature of the carbonyl compound, with intermolecular reactions presented first, followed by intramolecular reactions. The emphasis will be on material published since the field has been reviewed " and on examples demonstrating the stereo-, regio- and chemo-selectivity of these reactions. Coverage is restricted to the addition of carbonyl and thiocarbonyl compounds to simple alkenes. Addition of carbonyl compounds to vinylsilanes, allylsilanes and enol ethers is covered in the following chapters. Addition of imines and iminium compounds to alkenes is presented in Part 4 of this volume. Ene reactions with alkenes and alkynes as enophiles are covered in Volume 5, Chapter 1.1. Use of aldehydes and acetals as initiators for polyene cyclizations is covered in Volume 3, Chapter 1.6. [Pg.528]

Reviews have appeared on the use of the Wittig reaction in industrial practice, the Claisen rearrangement, synthetic applications of the retro-Diels-Alder reaction, organo-palladium intermediates for the alkylation and arylation of olefins, the Prins reaction to give 1,3-dienes, and intramolecular [4 + 2] (Diels-Alder) and [3 + 2] cycloadditions.An interesting discussion of the regiospecificity of the Diels-Alder reaction in terms of frontier orbital overlap favours the Woodward-Katz concept. Useful alkyne and polyene coupling reactions are described in reviews on the chemistry of vitamin the synthesis of insect sex... [Pg.3]

In furtherance of these smdies, the reaction scope was broadened by employing homopropargylic amines to give the corresponding aza-cycles (Scheme 26) [39, 40]. Hence, the alkyne aza-Prins cyclization between homopropargyl tosyl amines... [Pg.17]

A plausible mechanism for this new alkyne aza-Prins cyclization is outlined in Scheme 27. Thus, reaction of the homopropargyl tosyl amine with an aldehyde promoted by ferric halide generates the W-sulfonyl iminium ion. This intermediate evolves to the corresponding piperidine, via the vinyl carbocation. Ah initio theoretical calculations support the proposed mechanism. [Pg.19]

Mascarenas developed a synthetic method to 1,5-oxygen-bridged medium-sized carbocycles through a sequential ruthenium-catalyzed alkyne-alkene coupling and a Lewis-acid-catalyzed Prins-type reaction (Eq. 3.45). The ruthenium-catalyzed reaction can be carried out in aqueous media (DMF/H20 = 10 1).181... [Pg.78]

In a similar manner, terminal alkynes such as 1-14 participate in a Prins/pinacol reaction, resulting in a ring-expanding cyclopentene annulation to give compounds such as 1-15 in high yield (Scheme 1.5) [5]. [Pg.14]

A novel gold catalyzed example of three-component addition was recently reported by Shi et al. (Equation 8.44) [106]. Terminal aryl alkynes, alcohols and 2-(arylmethy-lene) cyclopropylcarbinols provided an intermolecular tandem hydroalkoxylation/ Prins-type reaction to form 3-oxabicyclo[3.1.0]hexanes from simple materials and under mild conditions, catalyzed by the system AuClPPh3/AgOTf. The proposed mechanism for this reaction is shown in Scheme 8.19. [Pg.457]

Starting from tetrahydrocyclopenta[f)]furan-2-one 342, enyne 343, the substrate for the domino reaction, was prepared in 12 steps and with an overall yield of 45%. Exposure of 343 to the electron-rich gold(I) complex (t-Bu)2P(o-biphenyl)AuCl at room temperature afforded cis-hydrindanone 344 in 78% yield as a single stereoisomer (Scheme 14.54). The postulated mechanism involved Au(I) activation of the alkyne to initiate the cationic olefin cyclization of 346 to give carbocation 347, which then underwent a pinacol rearrangement to the final product 344. An originally attempted Lewis acid-catalyzed domino Prins/pinacol rearrangement of... [Pg.567]

Prins cyclizations, which proceed by intramolecular addition of alkenes to oxocarbenium ions, provide a simple, efficient method for the stereoselective synthesis of carbocycles and cyclic ethers [77]. Halosilanes and (la) have been used for Prins cyclizations not only as Lewis acids but also as heteroatom nucleophiles. For instance, in the presence of MesSil or MesSiBr, and lutidine, mixed acetals (26) are efficiently cyclized to 4-halotetrahydropyrans (27) with high diastereoselectivity [78]. The halide is introduced into the axial site of the C(4) position. The proposed mechanism for the MesSiBr-promoted reaction involves the initial formation of a-bromoethers (28) from (26). Solvolysis of (28) provides the intimate ion pair (29). Cyclization to the chair transition structure (30) and proximal addition of the bromide produces the observed axial adduct (27). The role of lutidine is to suppress a less selective HBr-promoted cyclization (Scheme 9.23). Acetals bearing an alkyne or allene moiety also undergo the halosilane-promoted cyclization to form haloalkenes [79, 80]. [Pg.479]

Moreover, spiroketals are produced from tandem hydroalkoxylation of 4-alkynols (Scheme 15) [130]. Starting from diynediols, bis-spiroketals are obtained using Au (I) as catalysts [131]. Furthermore, Barluenga et al. reported the formation of spirocychc compounds in a tandem alkyne hydroalkoxylation [4 -1- 2] cycloaddition reaction [132, 133], together with a tandem intramolecular hydroalkoxylation of a triple bond followed by a Prins-type cyclization [129]. [Pg.302]


See other pages where Prins reaction, alkyne is mentioned: [Pg.101]    [Pg.191]    [Pg.220]    [Pg.494]    [Pg.299]    [Pg.191]    [Pg.366]    [Pg.534]    [Pg.534]    [Pg.465]    [Pg.182]    [Pg.412]    [Pg.224]    [Pg.302]    [Pg.534]   
See also in sourсe #XX -- [ Pg.2 ]




SEARCH



Prins

Prins reaction

© 2024 chempedia.info