Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Principle parts representation

Nitmerotts examples of chmbing the ladder can be fotmd in textbooks for secondary edncation. For example, textbooks start the stndy of the snbject of salts with the (strb-) microscopic particles of atoms and molectrles, followed by how atoms theoretically ate converted into iotts, and how ionic srrbstances ate brrilt from charged ions. Textbooks continne with the macroscopic properly of the soln-bility of ionic snbstances in water. Snbseqnently mote complex ions, snch as strl-phates and nitrates, ate addressed to become part of the stndents repertoire ns-ing the sub-microscopic world of chemistry and the symbolic representations. For other subjects, such as organic chemistiy, the pathway for stndy from the basic sub-microscopic particles and related chemical principles to making sense of a relevant macro-world of applications (e.g. production of medicines) is very long. Moreover, the sub-microscopic world of state-of-the-art chemistry has become very complex. [Pg.32]

This circuit is usually referred to as the Randles circuit and its analysis has been a major feature of AC impedance studies in the last fifty years. In principle, we can measure the impedance of our cell as a function of frequency and then obtain the best values of the parameters Rct,<7,C4i and Rso by a least squares algorithm. The advent of fast micro-computers makes this the normal method nowadays but it is often extremely helpful to represent the AC data graphically since the suitability of a simple model, such as the Randles model, can usually be immediately assessed. The most common graphical representation is the impedance plot in which the real part of the measured impedance (i.e. that in phase with the impressed cell voltage) is plotted against the 90° out-of-phase quadrature or imaginary part of the impedance. [Pg.165]

Figure 9. (a) Schematic representation of the five-module format of a photoactive triad which is switchable only by the simultaneous presence of a pair of ions. This design involves the multiple application of the ideas in Figure 1. The four distinct situations are shown. Note that the presence of each guest ion in its selective receptor only suppresses that particular electron transfer path. The mutually exclusive selectivity of each receptor is symbolized by the different hole sizes. All electron transfer activity ceases when both guest ions have been received by the appropriate receptors. The case is an AND logic gate at the molecular scale. While this uses only two ionic inputs, the principle established here should be extensible to accommodate three inputs or more, (b) An example illustrating the principles of part (a) from an extension of the aminomethyl aromatic family. The case shown applies to the situation (iv) in part (a) where both receptors are occupied. It is only then that luminescence is switched "on". Protons and sodium ions are the relevant ionic inputs. Figure 9. (a) Schematic representation of the five-module format of a photoactive triad which is switchable only by the simultaneous presence of a pair of ions. This design involves the multiple application of the ideas in Figure 1. The four distinct situations are shown. Note that the presence of each guest ion in its selective receptor only suppresses that particular electron transfer path. The mutually exclusive selectivity of each receptor is symbolized by the different hole sizes. All electron transfer activity ceases when both guest ions have been received by the appropriate receptors. The case is an AND logic gate at the molecular scale. While this uses only two ionic inputs, the principle established here should be extensible to accommodate three inputs or more, (b) An example illustrating the principles of part (a) from an extension of the aminomethyl aromatic family. The case shown applies to the situation (iv) in part (a) where both receptors are occupied. It is only then that luminescence is switched "on". Protons and sodium ions are the relevant ionic inputs.
Here the components of excited state J are expressed in a representation that diagonalizes the spin-orbit operator. In general, this will be a complex representation. The principle of spectroscopic stability can again be used to express the components of Jin a representation that we denote jM. This representation is made up of space and spin parts where the spin part diagonalizes the spin operator. [Pg.54]

We then discover an extremely important fact each normal coordinate belongs to one of the irreducible representations of the point group of the molecule concerned and is a part of a basis which can be used to produce that representation. Because of their relationship with the normal coordinates, the vibrational wavefunctions associated with the fundamental vibrational energy levels also behave in the same way. We are therefore able to classify both the normal coordinates and fundamental vibrational wavefunctions according to their symmetry species and to predict from the character tables the degeneracies and symmetry types which can, in principle, exist. [Pg.164]

Aside from the continuity assumption and the discrete reality discussed above, deterministic models have been used to describe only those processes whose operation is fully understood. This implies a perfect understanding of all direct variables in the process and also, since every process is part of a larger universe, a complete comprehension of how all the other variables of the universe interact with the operation of the particular subprocess under study. Even if one were to find a real-world deterministic process, the number of interrelated variables and the number of unknown parameters are likely to be so large that the complete mathematical analysis would probably be so intractable that one might prefer to use a simpler stochastic representation. A small, simple stochastic model can often be substituted for a large, complex deterministic model since the need for the detailed causal mechanism of the latter is supplanted by the probabilistic variation of the former. In other words, one may deliberately introduce simplifications or errors in the equations to yield an analytically tractable stochastic model from which valid statistical inferences can be made, in principle, on the operation of the complex deterministic process. [Pg.286]


See other pages where Principle parts representation is mentioned: [Pg.308]    [Pg.80]    [Pg.344]    [Pg.220]    [Pg.357]    [Pg.2]    [Pg.67]    [Pg.5]    [Pg.18]    [Pg.20]    [Pg.25]    [Pg.27]    [Pg.31]    [Pg.33]    [Pg.42]    [Pg.295]    [Pg.370]    [Pg.209]    [Pg.143]    [Pg.47]    [Pg.321]    [Pg.342]    [Pg.323]    [Pg.12]    [Pg.5]    [Pg.18]    [Pg.20]    [Pg.25]    [Pg.27]    [Pg.31]    [Pg.33]    [Pg.42]    [Pg.186]    [Pg.2]    [Pg.461]    [Pg.3]    [Pg.53]    [Pg.270]    [Pg.105]    [Pg.253]    [Pg.173]    [Pg.201]    [Pg.249]    [Pg.28]   
See also in sourсe #XX -- [ Pg.192 ]




SEARCH



Principle parts

© 2024 chempedia.info