Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pipes, pressure drop

The measurement of a crude oil s viscosity at different temperatures is particularly important for the calculation of pressure drop in pipelines and refinery piping systems, as well as for the specification of pumps and exchangers. [Pg.318]

Measurement Requirements. Any analysis of measurement requirements must begin with consideration of the particular accuracy, repeatabihty, and range needed. Depending on the appHcation, other measurement considerations might be the speed of system response and the pressure drop across the flow meter. For control appHcations repeatabihty may be the principal criterion conversely for critical measurements, the total installed system accuracy should be considered. This latter includes the accuracy of the flow meter and associated readout devices as well as the effects of piping, temperature, pressure, and fluid density. The accuracy of the system may also relate to the required measurement range. [Pg.56]

Flow Nozzles. A flow nozzle is a constriction having an eUiptical or nearly eUiptical inlet section that blends into a cylindrical throat section as shown in Figure 8. Nozzle pressure differential is normally measured between taps located 1 pipe diameter upstream and 0.5 pipe diameters downstream of the nozzle inlet face. A nozzle has the approximate discharge coefficient of an equivalent venturi and the pressure drop of an equivalent orifice plate although venturi nozzles, which add a diffuser cone to proprietary nozzle shapes, are available to provide better pressure recovery. [Pg.60]

Good gas distribution is necessary for the bed to operate properly, and this requites that the pressure drop over the distributor be sufficient to prevent maldistribution arising from pressure fluctuations in the bed. Because gas issues from the distributor at a high velocity, care must also be taken to minimize particle attrition. Many distributor designs are used in fluidized beds. The most common ones are perforated plates, plates with caps, and pipe distributors. [Pg.78]

Figure 13 shows two pipe distributors, one in a branched and one in a ring configuration. These distributors minimize weeping, have good turndown, may requite the lowest pressure drop, and avoid the need for a plenum chamber. They are also well suited to multiple-level fluid injection. The disadvantages of these distributors are that there are defluidized soHds beneath the distributor and the mechanical design is more complex. [Pg.78]

In pipe distributors, the pressure drop requited for good gas distribution is 30% of the bed pressure drop for upward facing holes, but only 10% for downward facing ones. The pressure drop calculation and the recommended hole density are the same as for a perforated plate. To maintain good gas distribution within the header system, it is recommended the relation... [Pg.78]

The pressure drop accompanying pipe flow of such fluids can be described in terms of a generalized Reynolds number, which for pseudoplastic or dilatant fluids takes the form ... [Pg.96]

The upward flow of gas and Hquid in a pipe is subject to an interesting and potentially important instabiHty. As gas flow increases, Hquid holdup decreases and frictional losses rise. At low gas velocity the decrease in Hquid holdup and gravity head more than compensates for the increase in frictional losses. Thus an increase in gas velocity is accompanied by a decrease in pressure drop along the pipe, a potentially unstable situation if the flows of gas and Hquid are sensitive to the pressure drop in the pipe. Such a situation can arise in a thermosyphon reboiler, which depends on the difference in density between the Hquid and a Hquid—vapor mixture to produce circulation. The instabiHty is manifested as cycHc surging of the Hquid flow entering the boiler and of the vapor flow leaving it. [Pg.98]

Measurement by Electromagnetic Effects. The magnetic flow meter is a device that measures the potential developed when an electrically conductive flow moves through an imposed magnetic field. The voltage developed is proportional to the volumetric flow rate of the fluid and the magnetic field strength. The process fluid sees only an empty pipe so that the device has a very low pressure drop. The device is useful for the measurement of slurries and other fluid systems where an accumulation of another phase could interfere with flow measurement by other devices. The meter must be installed in a section of pipe that is much less conductive than the fluid. This limits its appHcabiHty in many industrial situations. [Pg.110]

In order to select the pipe size, the pressure loss is calculated and velocity limitations are estabHshed. The most important equations for calculation of pressure drop for single-phase (Hquid or vapor) Newtonian fluids (viscosity independent of the rate of shear) are those for the deterrnination of the Reynolds number, and the head loss, (16—18). [Pg.55]

Although it has been common practice to specify the pressure loss in ordinary valves in terms of either equivalent length of straight pipe of the same size or velocity head loss, it is becoming more common to specify flow rate and pressure drop characteristics in the same terms as has been the practice for valves designed specifically for control service, namely, in terms of the valve coefficient, C. The flow coefficient of a valve is defined as the volume of Hquid at a specified density that flows through the fully opened valve with a unit pressure drop, eg, = 1 when 3.79 L/min (1 gal /min) pass through the valve... [Pg.57]

Fig. 3. Solvent-processing equipment using partial condenser. Level a on the water overflow line to the receiver should be about 3 cm below level b on the solvent-return line. Dimension b—c must be great enough to overcome pressure drop in the vapor piping, condenser, solvent piping, and rotameter. In a 4 m (1000-gaI) ketde, dimension b—c would be at least 1.25 m. The volume of the piping described by the dimension c—d—e should contain twice the volume of dimension b—c, thus providing an adequate Hquid seal against normal ketde operating pressures. Fig. 3. Solvent-processing equipment using partial condenser. Level a on the water overflow line to the receiver should be about 3 cm below level b on the solvent-return line. Dimension b—c must be great enough to overcome pressure drop in the vapor piping, condenser, solvent piping, and rotameter. In a 4 m (1000-gaI) ketde, dimension b—c would be at least 1.25 m. The volume of the piping described by the dimension c—d—e should contain twice the volume of dimension b—c, thus providing an adequate Hquid seal against normal ketde operating pressures.
Magnetic flow meters are sometimes utilized in corrosive Hquid streams or slurries where a low unrecoverable pressure drop and high rangeabiHty is required. The fluid is required to be electrically conductive. Magnetic flow meters, which use Faraday s law to measure the velocity of the electrically conductive Hquid, are relatively expensive. Their use is therefore reserved for special situations where less expensive meters are not appropriate. Installation recommendations usually specify an upstream straight mn of five pipe diameters, keeping the electrodes in continuous contact with the Hquid. [Pg.65]

Piping pressure drop Optimum pressure drop... [Pg.82]


See other pages where Pipes, pressure drop is mentioned: [Pg.526]    [Pg.233]    [Pg.408]    [Pg.229]    [Pg.126]    [Pg.168]    [Pg.179]    [Pg.410]    [Pg.526]    [Pg.233]    [Pg.408]    [Pg.229]    [Pg.126]    [Pg.168]    [Pg.179]    [Pg.410]    [Pg.140]    [Pg.352]    [Pg.397]    [Pg.404]    [Pg.413]    [Pg.58]    [Pg.73]    [Pg.91]    [Pg.93]    [Pg.99]    [Pg.173]    [Pg.496]    [Pg.496]    [Pg.502]    [Pg.513]    [Pg.526]    [Pg.90]    [Pg.381]    [Pg.72]    [Pg.420]    [Pg.435]    [Pg.435]    [Pg.436]    [Pg.55]    [Pg.55]    [Pg.55]    [Pg.78]    [Pg.99]    [Pg.82]   
See also in sourсe #XX -- [ Pg.200 ]

See also in sourсe #XX -- [ Pg.173 ]




SEARCH



Drop Pipe

Helical pipe coils pressure drop

Horizontal pipe pressure drop

Pipe flow, pressure drop

Pipes pressure

Piping drops

Piping pressure drop

Piping pressure drop

Pressure Drop in Laminar Pipe Flow

Pressure drop at pipe

Pressure drop at pipe inlet

Pressure drop at pipe outlet

Pressure drop in a pipe

Pressure drop in fittings and curved pipes

Pressure drop in pipes

Pressure drop in piping

Pressure drop of pipe fittings

© 2024 chempedia.info