Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Presolar grains composition

Figure 8. Figure (a) after Clayton et al. (1976, 1977). The scales are as in Figure 1. The O isotopic compositions of the different meteorite classes are represented ordinary chondrites (H, L, LL), enstatite chondrites (EFl, EL), differentiated meteorites (eucrites, lAB irons, SNCs) and some components of the carbonaceous chondrites. As the different areas do not overlap, a classification of the meteorites can be drawn based on O isotopes. Cr (b) and Mo (c) isotope compositions obtained by stepwise dissolution of the Cl carbonaceous chondrite Orgueil (Rotaru et al. 1992 Dauphas et al. 2002), are plotted as deviations relative to the terrestrial composition in 8 units. Isotopes are labeled according to their primary nucleosynthetic sources. ExpSi is for explosive Si burning and n-eq is for neutron-rich nuclear statistical equilibrium. The open squares represent a HNOj 4 N leachate at room temperature. The filled square correspond to the dissolution of the main silicate phase in a HCl-EIF mix. The M pattern for Mo in the silicates is similar to the s-process component found in micron-size SiC presolar grains as shown in Figure 7. Figure 8. Figure (a) after Clayton et al. (1976, 1977). The scales are as in Figure 1. The O isotopic compositions of the different meteorite classes are represented ordinary chondrites (H, L, LL), enstatite chondrites (EFl, EL), differentiated meteorites (eucrites, lAB irons, SNCs) and some components of the carbonaceous chondrites. As the different areas do not overlap, a classification of the meteorites can be drawn based on O isotopes. Cr (b) and Mo (c) isotope compositions obtained by stepwise dissolution of the Cl carbonaceous chondrite Orgueil (Rotaru et al. 1992 Dauphas et al. 2002), are plotted as deviations relative to the terrestrial composition in 8 units. Isotopes are labeled according to their primary nucleosynthetic sources. ExpSi is for explosive Si burning and n-eq is for neutron-rich nuclear statistical equilibrium. The open squares represent a HNOj 4 N leachate at room temperature. The filled square correspond to the dissolution of the main silicate phase in a HCl-EIF mix. The M pattern for Mo in the silicates is similar to the s-process component found in micron-size SiC presolar grains as shown in Figure 7.
Zinner E (1998) SteUar nucleosynthesis and the isotopic composition of presolar grains from primitive meteorites. Ann Rev Earth Planet Sci 26 147-188... [Pg.280]

In practice, it is not sufficient for an object to have an isotopic composition that cannot be explained by radioactive decay or mass-dependent fractionation effects. The object must also have physical and chemical characteristics making it unlikely to be a product of solar system processes. For example, millimeter- to centimeter-sized refractory inclusions from primitive chondrites have been shown to contain small (parts in 103 to 104) isotopic anomalies in many elements. However, based on the size, composition, physical characteristics, and abundance of the inclusions, it is generally believed that these objects formed within the solar system. They preserve small isotopic anomalies because they did not form from a representative sample of the bulk solar system (see Chapters 7 and 14). So, isotopic anomalies can indicate either that an object is itself presolar or that it formed in the solar system from precursor material that was not fully homogenized in the solar system. As mass spectrometry has become more precise, small isotopic anomalies of the second type have shown up in a wide variety of chondritic materials. As we discuss below and in Chapter 7, these anomalies and bona fide presolar grains can be used as probes of processes in the early solar system. [Pg.126]

Bulk techniques still have a place in the search for presolar components. Although they cannot identify the presolar grain directly, they can measure anomalous isotopic compositions, which can then be used as a tracer for separation procedures to identify the carrier. There are several isotopically anomalous components whose carriers have not been identified. For example, an anomalous chromium component enriched in 54Cr appears in acid residues of the most primitive chondrites. The carrier is soluble in hydrochloric acid and goes with the colloidal fraction of the residue, which means it is likely to be submicron in size (Podosck el al., 1997). Measurements of molybdenum and ruthenium in bulk primitive meteorites and leachates from primitive chondrites show isotopic anomalies that can be attributed to the -process on the one hand and to the r- and /7-processes on the other. The s-process anomalies in molybdenum and ruthenium correlate with one another, while the r- and /7-process anomalies do not. The amounts of -process molybdenum and ruthenium are consistent with their being carried in presolar silicon carbide, but they are released from bulk samples with treatments that should not dissolve that mineral. Thus, additional carriers of s-, r-, and/ -process elements are suggested (Dauphas et al., 2002). [Pg.132]

Matrix minerals are complex mixtures of silicates (especially olivine and pyroxene), oxides, sulfides, metal, phyllosilicates, and carbonates. The bulk chemical composition of matrix is broadly chondritic, and richer in volatile elements than the other chondrite components. Some chondrules have rims of adhering matrix that appear to have been accreted onto them prior to final assembly of the meteorite. Small lumps of matrix also occur in many chondrites. Presolar grains, described in Chapter 5, occur in the matrix. [Pg.164]

We should also address the question of whether Cl chondrites represent the complete, low-temperature condensate from the solar nebula. Their bulk composition is consistent with such a model. However, Cl chondrites contain among the highest abundances of presolar grains that are not destroyed by aqueous alteration (the mineralogy of Cl chondrites is almost entirely due to such alteration). This suggests that it is more likely that Cl chondrites formed from representative samples of the dust inherited from the Sun s parent... [Pg.204]

As with the electron microprobe, the chemical composition is determined through comparison with standards. Corrections for interactions with different elements are also necessary. However, the standardization and correction procedures for the AES are much less mature than those for the electron probe. In cosmochemistry, the auger nanoprobe is used primarily to determine the chemical compositions of presolar grains. It is ideal for this application because it is a surface technique and has the same spatial resolution as the NanoSIMS (see below), which is used to identify presolar grains in situ in meteorite samples and IDPs. [Pg.525]


See other pages where Presolar grains composition is mentioned: [Pg.47]    [Pg.338]    [Pg.93]    [Pg.94]    [Pg.25]    [Pg.113]    [Pg.122]    [Pg.127]    [Pg.129]    [Pg.130]    [Pg.130]    [Pg.130]    [Pg.131]    [Pg.131]    [Pg.132]    [Pg.133]    [Pg.133]    [Pg.136]    [Pg.137]    [Pg.139]    [Pg.140]    [Pg.140]    [Pg.141]    [Pg.141]    [Pg.142]    [Pg.143]    [Pg.144]    [Pg.145]    [Pg.149]    [Pg.166]    [Pg.167]    [Pg.201]    [Pg.201]    [Pg.204]    [Pg.207]    [Pg.214]    [Pg.374]    [Pg.489]    [Pg.489]    [Pg.491]    [Pg.531]   


SEARCH



Grain composite

Presolar grain

Presolar grains isotopic composition

© 2024 chempedia.info